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Among these properties are grip strength, stability, compliance and mobility. The
results depend strongly on the interaction between the gripping surfaces and the
object. For example, a grasp may be unstable when the fingertips are pointed, but
stable for rounded fingertips. The analysis suggests that particular kinds of
sensory information are especially useful in controlling a grasp and supports the
notion that general grasping "rules of thumb" can be identified for use by robots.
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/ Abstract

The subject of this paper forms part of a broader effort to model the mechanics of grasping and fine-
manipulation for robots. Grasping is the act of acquiring and holding (gripping) an object. Fine-
manipulation is an extension of grasping to include control of the object using an cnd-effector such as a
gripper or a hand. A mechanical model of grasping and manipulation forms the basis for controlling grippers
and paves the way for robots that can make independent judgments about how to pick up and handle the
objects they encounter. In this paper a procedure is developed for computing physical properties with which
a grasp may be described. Among these properties arc grip strength, stability, compliance and mobility. The
results depend strongly on the interaction between the gripping surfaces and the object. For example, a grasp
may be unstable when the fingertips are pointed, but stable for rounded fingertips. The analysis suggests that
particular kinds of sensory information are especially useful in controlling a grasp and supports the notion
that general graspin "rulcs of thumb-c'an be identified for use by robots. ,
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1. Introduction

What is tic best %ay to hold an object given a particular gripper and a particular task to perfornn? If we

look to natural examples of gripping we find that the answer to this question is a function of many dings

including friction, the soflness of thc object. the fragility of the object, and how wcll the object "fits" the

geometry of the gripper. For example, all other things being equal, human beings will favor gripping

positions that comfortably fit the size and shape of the hand. We avoid gripping positions that require us to

stretch or to cramp our fingers, unless other considerations predominate. Over years of experience. we seem

to acquire a database of suitable gripping configurarions which we apply to the world at large. We choose

gripping positions without much conscious thought until we are faced with a completely unfamiliar object

shape (especially if the object is also slippery or heavy).

For the current generation of industrial robots there is little need to calculate suitable gripping positions.

Foday's robots are play-back machines repeating sequences of instructions. they may be programmed to

assemble various shapes or to load them into machine tools but they never have to decide how to grasp an

object. The grasp is chosen for them when thcy are programmed and is part of the information associated

i th the task. This approach is adequate as long as robots continue to perform a narrow range of tasks with a

limited selection of parts, but it becomes impractical if robots are to work under less structured circumstances.

For example, a robot working on the ocean floor, or in a nuclear power plant, would be more effective if it did

not have to ask for instructions about how to pick up every new object it encountered. This goal prompts us

to ask whether a suitable grasp is something that can be determined analytically and expressed to the robot in

terms of an algorithm. But first, we need a model that describes different grasps and predicts how a grasp will

respond to forces and motions applied to the object as the robot proceeds with a task.

The prebent paper draws upon previous work on the kinematics of an object being manipulated by a

gripper and develops a procedure for determining mechanical properties which may be used to characterize

gnps and to discriminate between them. The result is a linearized model of how a grasp will behave in

response to task-induced forces and motions. Using the grasp model, the paper considers the importance of

gripper contact surfaces, frictional properties and gripping forces in determining the overall behavior of the

grasp.

1.1 Previous Investigation3 on Prehension

Recently, a few works have appeared that cover grasping kinematics, gripper control and related topics.

Asada [1] begins by describing the force balance for an object held by a gripper with several fingers. He

assumes that the gripper has ka actuators each driving I fingers of which fl are actually touching the held

object at a particular time. Thus there are a total of kaxin fingers in contact with the object, of which ka are

independent. He next assumes that each finger has a small contact area so that the contact between each

-0 ." '-_. . - " - : ' ' ' ' ' - . ' " . i " ; - " "- ' " " " " " 1



finger and the object can be trcated as a point contact. With this assumption the force exerted by each finger

can bc resolved into forces perpendicular and tlng ntia; to the object surface. [he a&sumption is a limiting

one because it renio~cs the possibility that a single finger can apply a torque about its own axis and ignores

rolling or rocking motion between the fiwgcrtip and the object. However, it is oftcn a reasonable

approximation for grippcrs with small gripping surfaces made of hard materials (a pair of tongs, ftor example).

Generally, the point-contuct approximation results in an overestimate of dhe gripping force required to
maintain equilibrium. Sa'isburv [21 and Okada [3, 41 make similar assumptions in describing the forces

exerted by their three-fingered hands, although Salisbury discusses the effects of having a "soft" finger that

can apply moments, t%,isting about its centrad axis.

Having described the equilibrium requirements for an object held by several fingers, Asada addresses the
problem of choosing a suitable finger configuration, He treats the held object as a rigid body and models the

fingers as elastic members with one degree of freedom, along a specified trajectory or locus. He simplifies the

grasping model by ignoring friction at the contact points between the fingers and the object. With this model
he is able to construct a potential function, based on the shape of the object- which indicates the relative

stability of different finger configurations. In the absence of friction, an object held in a stable grasp will
return to its original position if displaced slightly. The theory works well for slippery objects and whenever

the chief concern is that the object should not be dropped (when we wash dishes we hold them in a stable

grasp.) Unfortunatel). the utility of the model for industrial robots is very limited. Friction is an important

consideration and is often used to advantage. According to Asada's theory there is no sausfactory way for a
two-fingered gripper ro grip many shapes. For example, there is no "stablc" configuration for a two-fingered

gripper grasping a sphere. In practicc. people depend on fricuon when they design grippers and when they

program robots to grasp and manipulate objects. A stable grip guarantees that the gripper will not drop an
object. but often a great deal more is required. It may be required that none of the fingers of a gripper should
slip with respect to an object while it is manipulated because if they do, the object will not return to the same
equilibrium position.1 Industrial robots are ofte. programmed based on a precise knowledge of the position

and orientation of a grasped object with respect to the robot coordinate system. As soon as any of the fingers

slip, this information is lost.

Salisbury [2, 51 and Okada [4, 31 are concerned with developing control laws for multi-jointed three-finger
grippers. The hand designed by Okada can perform a variety of manipulation tasks such as screwing a nut

onto a bolt and manipulating a match box in three dimensions. When the motions of the manipulated object
are not very small it becomes necessary to treat the fingertips not as points but as surfaces of finite radius. The
fingertips roll with respect to the manipulated object and the kinematic description of the fingertip locus

becomes extremely complicated.

Salisbury [2. 5] draws upon his earlier work in manipulator control [6] in which he discusses how to

determine the correct servo stiffnesses for the joints of a robot to achieve some desired set of stiffnesses

]In the absence of fnctaon the object would return to its original, sable portion.
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c.%prcscd with respcct to the robot hand (or any other convenient coordinate system). Salisbury considers
several contact types , including point, line and planar contact (with and without friction), and discusses the
constraints imposed on the object by each. He also introduces a "soflt" finger with friction which can apply
torques about its own axis in addition to forces at the contact point. The efTects of rolling and defomnation of
fhe fingertip arc not considered. He also considers the interaction of groups of contacts ahout an object and
discusses the conditions under which arbitrary motions and forces can be applied to the object. Like Asada,
he shows that for pointed fingcrs a jacobian matrix can be found which rcltcs trces exerted at the fingertips
to an equi,,alcnt force and torque at the ccntroid of an object held b thc fingers. lie augmcnts this jacobian
matrix to include internal forces which essentially measure the magnitude of the "pinch" exerted by pairs of
opposed fingers.

Hanafusa et al [71 also consider the kinematics ofan object ficld by point-contact fingers. hy discuss the

conditions under which the the otject is free to move in any direction if the finger joints are loose, but
becomes completely constrained if the finger joints are locked. They consider a gripper with an arbitrary
number of fingers, each with an arbitrary number ofjoints, and discuss methods for 3pecifying the redundant
degrees of freedom.

Orin and Oh [8] ha~e considered the related problem of dccrmining the optimum distribution of forces in
closed kincmatic chains. 'iey are pnmaril. interested in extending earlier work in the control and analysis of
walking machines. but they point out that a walking machine and a multi-fingered gripper handling an object

both contain closed kinematic chains.2 Usually, the number of independent joint actuators in the chains is
greater than the number required to impart a desired set of %elocities and forces to the body of the walking
machine or the grasped object. They compute the dynamic terms for all the legs and then use a linear
programming approach to minimize the energy expenditure in the motors, subject to a number of constraints.
The constraints include friction limitations at the feet (or fingertips) and maximum joint torques at the
actuators. Normally, friction limitations result in non-linear constraints, but by approximating the
conventional "friction cones" with friction pyramids a conservative set of linear inequality equations is
obtained. The contacts between the feet and the ground are treated as point contacts in the kinematic model.
To measure the energy expenditure, a power term is established, where the power at each joint is a function of
the joint torque and velocity. The simplex method is used to find the minimum of the cost function.

The linear programming method described by Orin and Oh [8] allows a sequence of joint torques to be
determined off-line for a walking machine, but is too slow for real-time use. However, for a hand mAking
small motions with the fingers, inertial terms can be ignored, considerably reducing the computation time.
Power expenditure might actually be of little consequence in a robot gripper, but other terms might be added
to the overall cost function to determine an optimum set of joint torques and stiffncsses for a given graap
geometry.

in fact. a hand supporting a basketball is like a very large animal walking upon a ery sma"l planet.
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Mason 19! investigates the ff,ts of friction on hasic operations in which a robot grasps an object or

pushes it into place. lie points out that dhe role of friction in simple tasks pcrl'ormed by manipulators has not

been adequalcly 'tudied. '1 he 1'eA investigators who hae considercd friction I\e been content to use the

model decloped by Coulomb in 1781. For tasks inls ing grippers and objects with hard, lit surfaccs, the

Coulomb model giees accurate results. Using it. Mason dcrises analytic solutions predicting, for example, the

direction and the rate of rotation of an object pushed along a flat surface.

For grippers with soft fingers (and particularly the human hand) the Coulomb model of friction may not

aJcfratel\ describe what we obscre from experience:

"When there is a possibility of the object slipping over the skin. a resistance, namely friction.
intervenes which is proportional to the area of the surfaces in contact ...Sweat glands, by
moistening the skin. tend to increase friction and make de skin more adhesive." [10]

At light pressures. adhesion contributes greatly to the tangential force that a contat can sustain without

slipping. -Tlhe adhesion is not directly related to the normal force, but depends on surface chemistry, surface
roughnes, and the past history of normal forces. As an illustration, a compliant elastomer, once it has been

pressed against the surface of an object, can often resist tangential loads e%en after the normal pressure is

reduced to icro. lhe Coulomb coefficient of friction in this case would be infinite.

1.2 Current Investigation

In tie following sections a procedure is given for determining mechanical properties with which a grip

ruay be described. In the analysis, the arrangement ot the fingers upon die object, and the stiffness and

kinemaic desigr of each finger are assumed to be known. The object is given arbitrary small displacements

and the resulting motions and changes in forces are computed. From these, the overall stiffness of the grip,

the ability of the grip to resist slipping and the ability of the grip to recover equilibrium in the presence of

disturbances may be established. The procedure is initially illustrated with some two-dimensional examples.

It is shown that the results may contain not only stiffness terms of the kind discussed by Salisbury [2] but also

terms due to differential changes in the grip geometry. Unlike the stiffness terms, the geometric terms may

make the grip unstable. A concept of gnp stability is then developed which includes friction. A robot may

choose between competing grips by selecting one which is stable in the presence of disturbances, which is

most able to resist slipping and which matches the stiffnesses of the fingers to the compliance requirements of

the task.

The analysis is extended to three-dimensional examples and explicit consideration is paid to the

importance of the interaction between the fingertips and the object. Different contact conditions involving

pointed, curved, soft and hard Fingertips are modeled. A summary of the contact types is shown in Table 6-1.

The point-contact model used in earlier analyses sometimes giscs misleading results, especially when the

object is small compared to the hand and %hen compliant gripping surfaces are employed. Finally, the results

of the analysis are discussed in terms of designing and controlling dextrous n.;nd or grippers. The results
suggest that certain kinds of sensory information will be especially useful for grasp control and that a number

of grasping "rules of thumb" may be argued on mechanical grounds. For example, an argument can be made

r
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for gripping as gently- as possibic WithIoLt letting the objct slip. A gentlc grip not only helps to prevent

damage to die objc(.t and fingcr, but also (hor agivcn combination of finger stiffncsscs) results in a grip that is -

I ~~more likely Lo be stablc.............



Nomenclature for Section 2

f = scalar magnitude of forcc applied by the ith finger

; ai = acting coefficicnt of friction at the ith finger ( 0 _< ai <5 1)
coefficient of friction at the i'h finger (from surface properties)

n = unit normal vector at the ih finger

I, = unit %ector tangential to the object at the ith finger

"r vector from origin fixed in the object to the ith finger

f = external force taken at the origin

me = external moment taken at the origi:.
an, = normal component of displacement of ih finger

al, = tangential displacement of ith finger
3,8 = angle between unit normal and ri for it finger
k-10 = normal stiffness of ith finger
k, = tangential or lateral stiffness of ith finger

q = a unit vector in an arbitrary direction

8q = angle between q and the x axis.

6q = small displacement of the object in the q direction
s0 = small rotaion of the object

kq = translational stiffness of the grip in direction q

kg = rotational sdffness of the grip
Ar = restoring torque due to finger stifTnesses

r fag = grasp torque due to rotation

(see also Figure 2-2)

. " * - - _ " - .. - .-- °- , , . ...
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2. Determining Mechanical Properties of a Grasp

In this section thc concepts of grip stiffness, strength and stability arc discussed and the general procedure
is described for determining the force/displacemcnt characteristics of a grip. 'hc concepts arc illustrated at

the end of the section with some simple. two-dimensional examples.

2.1 Grasping Model and Assumptions

A gripper may be modeled as a device with several fingers in contact with an objccL The "fingers" need
not resemble human fingers. They may be contact points on the jaws of a standard commercial gripper. If,
for the moment. we adopt the Coulomb model of friction the static equiibrium equations become:

f, = F+ n= + al11

M; M

me= rxf(-n) + rixaj1,Af(l,) = irnixr, + aj.,(rlxlj)]
t=1 i=1

(see Nomenclature and Fig 2- Ifor explanation of terms)

The problem described by the above equations is in general statically indeterminate. The values f, and

yili are the unknowns. In the above equations a, is taken as a variable parameter between 0 and 1. so that
0 _< a, _ p.,, where pi is the standard coefficient of friction determined from surface properties. The unit
vector I is tangential to the surface of the body but its direction is otherwise unspecified. Until the object
starts to slip with respect to the fingers. I, and ai cannot be further defined. We can require that the above
equations have at least one solution such that all ai < 1 but this is not particularly useful. It eliminates absurd
finger arrangements (eg. all fingers on the same side of the object).

The presence of friction means that there are generally many grasps that will satisfy static equilibrium and

it is possible to choose between them to fino the one best suited for a given task. In fact, when we pick up
objects with our own hands the grip we choi,,c often depends more on what we intend to do with the object
than on its shape or surface properties. For example, if we are asked to pick up a tall. thin candle that is lying
on a table we may grasp it near the middle so that it balances in our hand. but if we want to push the candle
into a candlestick holder we usually hold the candle near the base. Similarly, if we pick up a pen to hand it to
somebody the grip we choose is entirely different from the one we use for writing.

To proceed further with a mechanical analysis it is necessary to adopt a force/deflection model for the
gripper and the object. This is analogous to the use if Hookes" stress/strain relations in solid mechanics in
which a model for the material provides the necessary additional equations. The force/deflection model used

in the fo.lowing sections incorporates a number of simplifying assumptions which are listed below.

• ..0



*The fingers ,re modcled as elastic structures and the object as a rigid body. This is usually a good
approximation for robots assembling parts or holding tools since die scrvocd joints in the robot
arm and fingers make them considerably less stiff than thc grasped object. For robots handling
such materials as textiles, foamed plastic or rubber, the elasticity of the object would have to be
taken into account.

The analysis is static. There is no consideration of dynamic terms and no explicit treatment of

slipping motion. However, the model can predict when a finger will start to slip upon the object
and different grips may be compared by finding the one which will resist the largest task-related
force or torque before slipping occurs.

* The analysis does not attempt to solve for the optimum grip for a given task but provides a
mechanism for evaluating mechanical properties such as the stiffness, stability and resistance to
slipping of a grip. Competing grips may be compared on the basis of such properties.

, The analysis is not concerned with geometric constraints, such as whether a gripper is actually ableI
to achieve a given grip. or whether it is possible to place the fingers underneath an object that will
be picked up from a flat surface. These are important considerations and a number of them are
addressed in [11, 12. 13). but they are beyond the scope of this analysis. Basically, it is assumed
that the grips under consideration have already met such criteria.

* The analysis is concerned only with small motioas about an initial position. The small-motion
assumption permits linear force and displacement transformations. The results of the analysis are 9
invalid if the fingers make large motions with respect to the object. for example if they are used to
turn a nut onto a bolt or to flip an object over in the hand. However. there are many tasks in
which a grip is chosen and then the fingers make small motions with respect to the object. When
tools such as wrenches or screwdrivers are used, the fingers usually make small motions with
respect to the tool, while larger motions arc accomplished with the wrist. As another example,
when assembling parts, an initial grasp is chosen and then the fingers make small adjustments as
the mating parts are slid together.

, Only motions with respect to the hand are considered. The interaction of the hand and the robot
arm is not considered. This is not a severe retriction, however, since the compliance (inverse of
stiffness) of the arm can always be added to the compliance of the hand when determining the
overall force/deflection characteristics. For small and relatively low speed movements of the
fingers there is little concern that dynamic coupling between hand and the arm will cause
difficulties.

2.2 Stiffness, Strength and Stability of a Grasp

Stiffness

The first criterion that might be considered for evaluating a grip is the stiffness of the grip in response to

externally imposed loads. The grip stiffness is a function of the stiffnesses of the fingers and of their
arrangement about the object. Given a variety of possible grips, it may be useful to find the one that is stiffest
with respect to torsional or translational loads. A stiff grip is uscfil when manipulating objects at high speeds.
It helps to ensure that the displacements caused by inertial forces and torques will be small and that the

natural frequency or bandwidth of the gripper/object ensemble will be high.
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r, = vector from origin to contact

n. = unit normal at contact surface

1i = unit tangent at contact surface

Figure 2-1: A two dimensional object held by three fingers

Robots moving freely in space are generally position-servoed and under these conditions the stiffest grip is

often the best, but when a robot interacts with other objects, as during an assembly task, it becomes useful to

control the mechanical impedance of the arm and the grip [1 4, 15]. Impedance control is especially well suited

to servoing the fingers of the gripper or hand [6]. At low speeds, dynamic effects become negligible and
impedance control reduces to stiffness control. For example, the robot hand can be made stiff in directions

which are not constrained by contact with fixtures and compliant in the directions which are. In terms of

choosing a grip, the best grip is the one which best matches the requirements of the task to the achievable

range of finger stiffihesses.

Resistance to slipping

A second way to discriminate between grips is to find the one that, for a given combination of servo

stiffncsses. grasping forces and fingertip geometries, can resist the greatest possible applied force or torque

before any of the fingers slip. This again is desirable when manipulating objects at high speed. For tasks
involving contact forces and torques the same analysis may be used to find the grip for which the fingers are

least likely to slip in response to the expected range of forces and torques.

I
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Stability

A third criterion is grip stability. Since the analysis is linearizcd and only small motions are considered it

is only possiblc to dctcrminc wlicher a grip is infinitesimally stable. that is. whcther de grip will return to its

original position if the object is displaced by an arbitrary small amount. This amounts to determining

whether thc changes in the forces on the object that result from disturbing it will tend to oppose or to increase

the disturbance.

Finger
Finger

n

[n k

Sexr Object surface

-0 k j = lateral finger stiffness r

k = normal finger stiffness
r = vector from origin to contact
q = unit vector in arbitrary direction
1 = unit tangent vector at contact
n = unit normal vector at contact Origin X
p = angle between unit normal and r

Figure 2-2: Detail of a single two-dimensional finger from Figure 2-1

2.3 Procedure for Establishing Grip Properties

The procedure used in determining the above grip properties is outlined below.

1. Displace the obiect an arbitrary, small amount.

2. Determine the resulting motions of the fingers. These will depend on the finger geometries,
contact types and stiffnesses.

3. Determine the changes in the forces at the finger/object contact areas hat result from the motions
of the object and fingers. There are two contributors to these changes. The tirst arc restoring
forces that result from the stiffnesses of the fingers. The second result from changes in the grip.
The fingers and the object do not move together as a rigid ensemble and the resulting
modification of the grip geometry changes the way in which the finger forces act upon the object.

I. . ". " . . . " . -. .. -. o . --- -- -" . - - - . - ' -. -- i -i -/ .j f f .i 2 . -_ _i
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4. Compare the new forces at the finger/object contact areas with the maximum forces that the
contacts can sustain without slipping. Also determine whcLher the normal forcs would become
negative at any of the fingers (meaning that they would lose contact with the object).

5. Compare the new resultant forces and torques on the object with the original forces and torques
and with he displacement of the object to determine the stiffness and infinitesimal stability of the
grip.

In later sections, particular attention is paid to the interactions between different kinds of fingertips and an

object. Curved, soft, and pointed fingertips are discussed and their effects on the grip are investigated. It is

shown that the point-contact model adoptelt in earlier analyses is only accurate when the fingertips are small

compared to the object being held. Thus, if we hold a large cardboard box or a basketball. a point-contact

model of our fingertips is fairly accurate, but when we hold a matchbox or a golf ball it is not.

2.4 Two-Dimensional Examples

The concepts of grip stiffness, stability and resistance to slipping can be illustrated with some short

examples. In these two-dimensional examples, the forces and motions are broken into scalar components, but

a matrix notation will be used for the three-dimensional analysis in later sections. Figure 2-1 shows a rigid

body held by three fingers which are assumed to have some charxct stiffness. The actual stiffness of

each finger need not be prescribed; only the relative stiffness with respect to the other fingers is required. In

the following two-dimensional examples, the finger stiffnesses may be resolved into components ki and kV,

perpendicular and parallel to the surface of the object. As before, the fingers need not resemble human

fingers but may be the contact areas of an industria gripper. It is required only that their stiffness and friction

characteristics be known. Figure 2-2 shows the coordinates and stiffnesses for a single finger.

Looking first at torsional loading, if a force is externally applied to the object, (perhaps by a wrench at the

x,y origin in Figure 2-1), the object will be rotated by a small amount, 8. Each fingertip in contact with the

object must move 8xri along with the object surface. The finger motions can be resolved into components

parallel and perpendicular to the surface of the object.

8ni = (80xr). n = -r,8 sine,

8n: = (80 xr).I = -ri88 cosp,

We can equate the potential energy stored in rotating the body with the energy stored in the fingers to express

the rotational stiffness of the grip in terms of the finger stiffnesses.
m

k 80' = 1k',8n,2 + ks842

Substituting for 8n, and 811,

ke = E ri'(ki sini, + k1, cos2p)
i=1

The stiffest grip for torsional loading is that for which kg is greatest.
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"To find the grip that will resist the greatest torsional load without slipping we first look at each of the grips
under consideration and discover which finger (or fingers in a symmetrical grip) is nearest to slipping for a
given applied moment, me, at the origin. As the body is rotated 80, the changes in die forces at cach finger

* are

Sfr= kj Sn i  and Sfl,= k, 81i.

From the discussion earlier in this section, fh = ajiif, for the Coulomb law of friction, where slipping
will occur as a- 1. Then, for example, if initiallyf = 0, slipping will occur when

kjj 6 I > # if,

Thus, for a given rotation, 88, the finger nearest to slipping will be the one for which a is closest to 1. or
for which

kli-l i  mCki(- r, cospi)a i = AiLf i k o j~if j

is greatesL

Having found the "worst case" finger for each grip we chose between grips by finding the one for which

me is greatest before a = I at the finger.

Me,"x= -k--ef!
k rj cos Pj

(wherej is the subscript of the "worst case" finger)

We do not have to worry that cos Pj will approach zero since it will never be zero f,. the finger closest to
slipping unless all fingers are equally likely to slip.

For motion in an arbitrary direction, q. the a:,ee at oach finger between q and ni is (Pi = 8 - - q
(where q, n, 8. P and Oq are shown in Figure 2-2 for a typical finger). Equating potential energies allows the
translaional stiffness to be expressed in terms of the finger stiffnesses.

m
kq = k,1 cossqt + kLI sin 2p I

Following the procedure used for the rotational case. we can choose between grips to find the one that will
withstand the largest force, fe, in a given direction, q, before any of the fingers slip. The "worst case" finger is
the one for which

ajk= k11 , _ fkj sin qt
JA =  Ifni k q A fn I

is greatest. The best grip is then the one for which f. can be greatest before the "worst case" finger will slip.

feniX i = -A

kp i p
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Figure 2-3: Five ways to grip a rectangle with four fingers

2.4.1 Choosing between five grips: an example

Figure 2-3 shows five grips on a rectangular block. Grips 1, 4 and 5 share the same configuration, but with

different finger spacings. We can use the above results to discrminate between the grips. To simplify the

computation we assume that the fingers are all identical and that their stiffness components. k, and kil, are

independent of the orientation of the finger. This is a reasonable approximation for long fingers with several

joints.
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fie highest rotational stiffness is achieved either with grip 1 or grip 2. depcnding on whethcr k,, or kli is

greater. If it is most important that none of the fingers slip when a moment is applied to the rcctanglc, then

grips 1, 4 or 5 should be chosen. Grip 1 offers the best combination of rotational stiffncss and rcsistanlce to

slipping.

For translations the picture is a bit more complicated since thc stiffncss and thc resistance to slipping vary

as die direction of q varies. Intuitively, one might suggest that Grip 3 is the safest choice. Figures 2-4 and 2-5

show plots of the stiffness and the maximum force without slipping as a function of angle. 0 q, For these plots,

k., was arbitrarily taken twice as large as k1i. Actual values of k,, and k1i might be quite different, but the

piots provide an example of how grip stiffness varies as a function grip geometry. In this case, the stiffness of

grip 3 is constant, regardless of the direction of re. Grip 3 also offers the most nearly constant resistance to

slipping and is therefore the safest choice for arbitrary loads, although other grips offer more stiffness or

resistance to slipping when the object is pulled in a single direction.

2.4.2 An unstable example

The foregoing discussion has focused on determining whether the stiffness of a grip is suitable and on

detcrMining when the fingers slip. The next question is whether the grasp will be stable if perturbed slightly.

A potentially unstable grip is shown in Figure 2-6. If the grasp forces are large, and if the fingers are not stiff

enough in the lateral direction, the rectangle will continue to rotate when disturbed by a small angle, SO,

instead of returning to the initial position. The same effect can be seen by gnpping a coin on edge between

two opposed fingers. If one squeezes too hard, the coin "collapses" to a more stable position in which one's

fingers are pressing against the faces. In general the coin will also slip with respect to the fingers when this

occurs, but before slipping occurs it is possible to determine whether the grip is stable.

As the rectangle in Figure 2-6 is rotated by a small angle. 68, the lateral stiffnesses of the two fingers

produce a restoring torque, for

for= 2k1 rs 0

At the same time, due to the rotation of the body, a torque is generated by the grasp forces,

= 2fAro

The net change in the torque upon the object is

Sme = (f, - k1r)2rS8

The grip is unstable if the change in the torque is positive for a positive rotation. 86. Thus, for the grip to be

infinitesimally stable it is required that f, < k1r. Evidently, for a given rectangle size and finger stiffness,

pressing harder makes the grip less stable. This result appears again in later examples and provides an

incentive for not gripping harder than necessary because for a given grip geometry, the stability of the grip

decreases with increased gripping force. Another result is that for a given finger stiffness and gripping force,

the grip is more stable for a longer rectangle (one for which r is large).



17

restoring torque: 2k i r2 8

grasp torque: 2f. rao

aY
,--' --" "-- '7 -fn

Finger Schematic -typ.

Figure 2-6: Instability ofa rectangle held by two ingers

These effects can be demonstrated by prcssing a pencil lengthwise between the index fingers of each hand.
As one presses harder the grip is likely to collapse unless one also tenses (stiffens) one's arm and finger
muscles. If the experiment is repeated for an old, short pencil and for a new, long one it will be seen that the
grip collapses more easily for the short one.

Unfortunately, if we return to the example of gripping a coin between two fingers of one hand, a problem
appears. If the fingers are now pressing against the faces of the coin instead of the edges, the grip should,
according to the above equation, become less stable. This is clearly incorrect and demonstrates that the
point-contact fingertip model gives inaccurate results for human fingers pressing against the faces of a coin. If
we repeat the example, using ball-point pens instead of our fingers to press against the faces of the coin, we
find that the grip is indeed very unstable. The problem is resolved if we model the finite curvature and
deformation of our fingertips. Thus, in the following sections. a framework is established in which examples
like those above can be extended to three dimensions and in which fingers with pointed, curved and soft

contacts are considered.
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Nomenclature for Three-Dimensional Analysis

0 = origin of(x.y,,z) systcm

bp = origin of(/.m.n) system and contact point on object

fp = contact point on fingertip

f = ongin of (a b. c) system

r, = 3xl vector from (x.y.z) origin to (l,.n)origin

rr = 3x1 vector from (a.bc) origin to (I,,n.n) origin

db = vector of small translations and rotations of die object in (x,y)z) coordinates

dbp = vector of small translations and rotations of ihe object in (Lm.n) coordinates

d, = vector of displacements transmitted through the contact

d1p = vector of small finger tran.ations and rotations in (L.tin) coordinates

Cr = vecu)r of small finger translations and rotations in (a b.c) coordinates

dq = vector of small finger translations and rotations in joint coordinates

9b = vector of forces and torques on the object in (x,)yz) coordinates

9bp = vector of forces and torques on the object in (Lr.n) coordinates

gC = vector of forces transmitted through the contact

grp = vector of finger forces and torqucs in (. n4n) coordinates
of = vector of finger forces and torques in (ab.c) coordinates

9Q = vetor of finger forces and torques in joint coordinates

[Jb] = 6x6jacobian relating db to dbp

(Jf] = 6x6 jacobian reladng df to drp

[Jq] = nf06 jacobian relating dq to d,

(Jfq] = nfx6 productof [Jf] and [Jq]

(P] = partion of [Jfq]
[P ] = non-singular partition of[J fq]

[G] = 9x9 grasp jacobian for three fingers

[Kq] = stiffness matrix of a finger in joint coordinates

[Kf = stiffness matrix of a fingertip for three-fingered hand

[Kx] = [Kf] rotated to world coordinates

[Kb] = stiffness matrix of the grasp

[Cf] = compliance matrix for finger and fingertip

[A] = 3x3 orthonormal rotation matrix

[R] = 3x3 skew-symmetric matrix for r

[I] = the identity matrix

[M] = matrix of contact degrees of freedom

[L] = square matrix assembled from [P] and [Kq]

I = vector of Langrange multipliers for [1]

= it Langrange multiplier
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Sq r, = sct.'f n indcpcndcnt clements in d-_

Uf = 3x I unit tangent vector on fingertip -

Ub = 3x4 unit tangent vector on object

nf = number of degrccs of freedom of finger

-- =number of force or displacement components transmitted through contact
S = arclength along Fingertip or object surrace

rc  = magnitude of radius ofcurvature of fingertip ....

r. = outer radius of contact area

E = modulus of elasticity .

G = shear modulus --------

4 = contact area

= ij moment or product of inertia

= polar moment of inertia ..

ai = stress in ii direction
7q = ij shear stress

k = scalar siffncss component

f = scalar force component

w = width

I = thickness

-.- -. .. -. . . . . . .-..i • .. . ." ".' " .. " " ." ".

I . -I. % . " . .. . .....
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3. Extension to Three-Dimensional Problems

3.1 Forward Force and Displacement Relations

- In the general case, the gripper fingers and the object may have up to three translational and three
' rotational degrees of freedom. It becomes convenicnt to use matrix equations to express the grip stiffness,

strength and stability. In the following discussion, force vectors, g or f, include force and moment
• icomponents and displacement vectors, d, include small translation and rotation components:

ft X [f f f. f f ff Y f ex' ey' OZI
* dt = [d d dz d d d_X ' , , OX, dOy, 821

i
The goal of this analysis is to express the interaction between grasping forces and small motions of the

object. If gb is the resultant grasp force on the object and d. is a vector of small motions of the object then
the desire is to determine

I agb =,

a db

Since db is a small quantity Lhis may be approximated by the linear relationship

Agb = [?]db

where [?] is a matrix that must be determined. To do this it is necessary to first estabiish how the forces
applied by the fingers, gf, determine the grasp force, gb, and to establish the relationship between a small
motion of the object. db, and the resulting motions of the fingers, df. If gb and db were scalars, 8fand Sx,
the relationship between them could be written

af
= k or Sf- k~x

Under certain circumstances, for example if the fingers do not move relative to the object when the object
moves slightly, an equivalent stiffness expression can be written for forces and displacements of the object

g = [KbJdb
where [Kb] is a symmetric stiffness matrix. More commonly, the fingertips and the contact areas will shift

with respect to the grasped object as it moves and new terms are added to the above stiffness relationship.

Such terms are discussed later in this section.

In Figure 3-1. the coordinate systems are shown for a fingertip touching an object. The fingertip may be
the last segment of a multijointed iinger or it may be a contact surface on the jaw of an industrial gripper.
The global coordinate system, (xjz), is embedded in the object at n. The (a b,c) coordinate system is
embedded in the fingertip atfand, like the (x,y,z) system, may be chosen with any convenient position and

orientation. The (I rnm ) coordinate system is shared by the fingertip contact area, fp, and the object contact
area. bp. The n axis is perpendicular to both the object and fingertip surfaces and the 4m axes lie in the

I- -". . . . .
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Figure 3-: Coordinate systcems for a finger touching an object

[7 common tangent plane. The finger join. coordinates are not shown in Figure 3-1 since they will be different
for each finger design.

It is assumed that the position and orientation of the (azb.c) coordinate system can be determined with

I respect to (xyz) from the geometry of the gripper and knowledge about the initial position and orientation of

the object. Salisbury [21 has shown that the position and orientzuon of the up of a multiiointcd finger may be
established in thc same way that the position and orientation of the cnd link of a manipulator are determined

*from the joint angles. The result is often expressed as a 4x4 transformation matrix, [T] 1161. The elements
4 of [ T] are given in Appendix A.

* Usually, the fingertip will have less than 6 degrees of freedom and the compliance of the fingertip will be
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7-. 

- .-.- 7 1~h--- - -

22

negligible in one or more directions. For example, a finger with nf<6 joints is often considered to have nf

degrees of freedom since the structural compliance of the inger links is negligible in comparison to the *1
compliance of the servoed joints. In this case, the displacement vector of the finger in joint coordinates, d,"
will be an hfXl vector.

The fingertip is also assumed to have known sUffncss properties, represented by the ntfxLfstiffness matrix .1
(Kq) in joint coordinates. Salisbury [2] has shown that the soffness matrix for the tip of a multi-jointed
finger, valid for small motions, may be derived from the finger kinematics and joir. servo gains.

Frequently, the fingertip may be treateQ as a rigid body so that small displacements of the finger in joint

coordinates may be related to displacements in the (abc), which in turn, may be related to displacements in
the (.rn) system with the linear transformations:

adfa= Jq dq (where [Jq - defines a Jacobian) (3.1)d q

dfp = [Jf]df (3.2)

dfp = [Jfq] dq where [Jfq] = [Jf [Jq] (3.3)
(nfx6) (6x6) (nfx6)

The fingertip displacement vector, d1,.. will contain 6 elements of which nf will be linearly independent.
A set of nf linearly independent elements within at, is called qf.

The object is treated as a rigid body and consequently, a small motion, db, of the object in the (x.yz)

system produces a displacement of the contact area, dbp, in the (,mn) system.

dbp = [Jb] d b  (3.4)

For generality. db and dbp are taken as 6 element vectors (possibly with some zero elements). A number of
identities for 6x6 Jacobians are given in Appendix A.

It can be shown 1161, by equating virtual work, that small displacements and forces transform in a

complementary way. If the grasping force, gfp, at the fingertip contact area is known then the equivalent
force in the (azb.c) system is found by equating the work done in displacing the fingertip by df and the finger

by df.

dfpt " gfp =df t 9f

Then. substituting from equation (3.2),

dft.g = dft [jf]t gp or gf = [Jf]t gfp (3.5)

Similarly,



g= [Jq]t gf (3.6)

and

9b = Jb~t gbp. .(3.7)

3.2 Summary of Forward Transformations

* The forward displacement and force transformations arc summarized in Figure 3-2.

Starting at the lower left corner with a displacement. db, of the object in (x,y,.z) coordinates. and following
thc arrows. thc displacements transmitted through the contact arc determincd as dc. Then, starting with the
contact forces. gc. on the objcct in (Lir~n) coordinates, and following the arrows, one computes the forces

upon Lhc object

Starting at thc lower right comner with displacements of the finger joints, d. the displaccment of the
* fingertip. df ca bc detcrmnined. Finally, if the contact forces, gfp, are known for the finger, following the

arrows givcs the forces in the finger joints,. §q'

Object force Finger joint torques

Jfq

()(nf xO) 9 q9bF -I (

(86) (6nc) (x6) (6nfx)

g* CI (nc)6)~
bbM

*()(6) Jfq

(6xnf)

(x,y.z) (l~rm,n) (a,b,c) (joint coordinates)

Object motion Finger joint motions
Figure 3-2: Flow chart for forward force and displacement trans formations
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The forward displacement relations provide transformations starting with the object or the finger and

working towards the common contact- l11C forward force relations start with the contact and work outward

toward the object or the finger. Unfortunately, these rcladons are not sufficient to complete steps 2 and 3 of

the procedure outlined in Section 2.3. Once d. has been determined, an inverse relationship giving dq in

terms of dc must be used. The solution depends on the type of contact and the number of degrees of freedom

of the finger, and is discussed in Section 3.3. Once dq has been determined, another invcrsc relation is

required to determine the change in grp. This solution also depends on the contact and the fingcr, and is

discussed in Section 3.4. A forward force transformation can then be used to determine the change in 9b

from the change in gfp.

3.3 Finger Motions and Constraints

The mobility of an object represents the number of degrees of freedom with which the object can make

arbitrary motions. The mobility is subject to constraints imposed at each contact point which may prevent

motions in certain directions and couple the motions of the object in others. Generally, the mobility of the

object decreases as the number of contact points increases.
4

The determination of mobility involves first finding the constraints imposed at each contact point and

then determining how the different contacts interact to limit the mobility of the object. In this section. the

emphasis is on characterizing the constraints and contact conditions for a single contact so that various

fingertips may be compared.

Once the constraints at each finger have been identified, the way in which they combine to constrain an

object is discussed in previous analyses [2, 7]. For such an analysis it is convenient to adopt the terminology of
wrenches and twists in which the magnitudes of the components of the force and displacement vectors, gbp

and dbp. are considered separately from their directions. The number of degrees of freedom of the object

depends on the intersection over all contacts of the degrees of freedom from each [7]. The number of

independent forces that may be applied to the object by the hand increases as the union over all contacts of

the forces that each can apply. When more than one contact can apply forces in the same directions, it
P4 becomes possible to specify internal forccs on the object [2, 7]. These may be set to ensure that all fingers

remain in contact with the object.

3.3.1 Constraints at a Contact

.4 At each contact point.. the constraints depend on how many degrees of freedom are transmitted through

the contact and on how many degrees of freedom the finger has. Basically, there are three categories. In the

first case a motion of the object exactly detennines the motion of the finger (this is the simplest case, in which

a part of [Jf q] is simply inverted for he inverse displacement and force relations). In the second case the

4 motion of the finger is under determined and in the third case the motion of the finger is over determined.

Forces and motions at the fingertip-object contact area are transmitted through a coupling matrix, [M].



The elements of [M] depend on the contact geometry (see Figure 4-1) and friction conditions. These are
discussed further in Sectitn 4. If thcrc is complete coupling in six degrces of frecdom between the object and
the fingertip (as in the case of a soft, sticky finger adhering to the object) [M] becomes a 6x6 identity matrix.
The elements of df that are transmitted to the finger form the vector dc and the clcmcnts of thc grasp force,

g p, that arc transmitted to the object form the vector gc which has nc components.

dc = (M]dbp gc = [M]tgfp (3.8)

The contact constraints arc found by comparing the elements ofd c with the independent members of df,.
As mentioned in the last section, nf elements of dfp will usually be linearly independent for a finger with nf
joints. A set of nf independent elements within dfp is called qf and, for the purposes of describing the contact
constraint, there are three conditions:

1. A set of independent elements in dfp can be found such that dc = qfand nc = nf. In this case
arbitrary motions of the object at bp are possible and the motion of the fingertip is completely
determined. Similarly, the joint torques of the finger completely determine the set of forces, gc,
that can be transmitted through the contact to the object.

2. A set of independent elements in dfp can be found such that dc c qf. If dc is a subset of q,,
arbitrary motions of the object at bp are possible but the finger motion is not completely
determined. The remaining undetermined elements of dfp or dq may be solved for by requiring
that the finger move so as to minimize its potential energy.

3. dc a qf. If dc contains elements that are not included in q, the finger and contact limit the
possible motions of the object. At the same time. it is possible that qf a d., in which case a
(constrained) motion of the object does not completely determine dfo. If this happens, the
undetermined elements of dap must be determined as above.

Methods for solving for the motions of the finger are discussed below for each of the above situations. In
each case, a submatrix, [ P ], is extracted from [J fq ] that relates the nc elements of dc to the nf elements of
dq: dc = [P]dq. The three cases are identified by evaluating the rank of[P].

3.3.1.1 Case 1: exactly determined

An example for which d. = q, and nc = nf is a finger with three joints, constructed so th-, the fingertip
can move in three directions, always touching the object at a single point fixed on the object surface. This is

mathematically the most convenient situation and forms the basis of previous investigations on grip stiffness
[2]. The matrix, C P ], that is extracted from [J f q] will be square and non-singular. The relations are:

rank([P]) = nf nc

dq = [P]'ldc  (3.9)

I.
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3.3.1.2 Case 2: under determined

When dc c qr, die submatrix, [P]. that relatecs the nc members of d,; to the f' joint variables, d,, will

have rank nc. The motion of the fingertip will minimize the potential energy of the finger, subject to the n¢
constraint conditions that make up the rows of [ P] Thc change in thc potential energy of thc finger may be
expressed as

AP.E. = gq t dq + I'(dqt[Kq]dq) (3.10) I
in which first term is due to work donc against the grasping joint torques and the second is due to the
stiftnesses of the fingcr joints. The second term is what provides the grasp stiffncss discussed in previous

investigations [2, 51, but the first term may be of comparable magnitude.

To minimize the potential energy, the magnitude of the above expression must be at a maximum. If the
elements of dq were all independent (L if there were no coupling between d. and dq) then the maximum
would be found by taking the partial derivative of the above equation with respect to each member of dq and
setting the resulting expressions equal to zero. In the present case, a flexible and systematic approach is to use
Lagrange multipliers. The resulting equation is conveniently expressed as

dq " [L]- [

where [L] can be assembled from (P] and [kq] and I is a vector of Langrange multipliers. Details are

given in Appendix A.1.

Once all the members of d, have been found, the motion of the finger in (L4mn) coordinates is found
using drp = [Jfq]dq. The restoring forces in the joints are given by Agq = [Kqjdq. Since [P] is not
square. [p]-t cannot be used as in Case 1 to determine the changes in the forces at the fingertip, 8gf p.
However, since d c qr and since dq have been determined subject to the constraints of [P], some columns

may be removed from [ P ] so as to leave a square matrix, [ P] relating dr to nc of the nf elements in dq.

3.3.1.3 Case 3: over determined

When d c a qf the elements of dc become coupled and the object is constrained by the finger and contact.
The submatnx. [P], will have a rank of less than nc. In this case, rows of [P] corresponding to particular
elements of dc may be eliminated to produce a smaller matrix. [P] that has the same rank as [P]. The
elements of dc corresponding to [P*] form the vector, d . If the new submatrix, [Pe] has rank nf then it
may be inverted as in Case 1 to determine dq from d. All the elements of dtp can then be recovered as
[Jfq]dq. Thus, the kinematic coupling between the elements of drp is defined.

If the rank of [ P ] is less than nf then the motion of the finger is not completely determined and potential
energy methods must be used as in Case 2 to determine dq from d*i. Again, the complete motion of the

fingertip is recovered from [J fq]dq.

" . .... . . .. p ... I - .... . .[ "r l .. i " -. . . .r- I... . . ... .-. .. .' '. .. .. . "
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n'he general method for determining die motiuns or a finger from the motions of the contact is illustrated
in ie le t hand portion o f F igu re 3-4. For the particu lar case in which [P ] is invertib le, th e m etho d is

summarized in Figure 3-3.
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Figure 3 3: Flow chart for cases in which [P) is invertible (Case 1)
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3.4 Computing Changes in Grip Force

- As mentioncd in Section 2, thc changes in the grip forces will be duc to two effccts. "l'Te first ccnsists of

the restoring forces in the finger joints produced by displacing the fingers. The second stcns from reladvc

motion between the object and the fingers which modifies the grasp georentry so that tic grasp forces produce

different forces and torques on the object.

The change in grip geometry can be broken into two parts. The first is due to the contact area shifting

upon the object and the second is due to relative motion between the finger and the object. For the first part.

recalling that the forces upon the object, g t, are given in terms of gfp by equations (3.7) and (3.8), the total

change in the forces upon the object becomes

Agb = A([Jb]t(M]tgrp) = A([Jb]t[M]t)gfp + [Jb]t(M]tAgfp.

The change in the product of the jacobians above may be expanded to give terms involving A[Jb]t and

A[M] t .

A [Jb]t will be zero if the contact area does not move with respect to the object when the object is

displaced by db. This is true for point contacts and for contacts in which a very soft finger adheres to the

surface. For curved finger/object contact surfaces, the contact area usually moves on the surface of the object

due to rolling of the finger and A(Jb] t cannot be ignored.

A[ M ] t will be zero provided that the coupling between the finger and the object does not change. This is

true for many contact geometries, although there are a few exceptions, such as a flat-ended finger touching a

flat surface or, the object. If the flat finger rocks slightly with respect to the object, the contact changes ftom a

line contact to a point contact or from a planar contact to a line contact. When this happens the number of

components of force and motion transmitted between the fingertip and the object is reduced and some

additional elements of [M]t become zero. Such transitions, however, are not smooth and continuous and

cannot be represented by a matrix A[M]t. In the following analysis it will be assumed that that A(M]t is

zero. The case of a flat-tipped finger on a flat object can be regarded as a limiting case in which the radii of

cur,,rture of the fingertip and object approach infinity.

The expression for A gt) is now given by

Agb = A[Jb]t [M]tgfp + [Jb]t[M]tAgfp.

In Appendix A.2, a method is given for determining the elements of A[Jb] for a given translation and

rotation of the contact area with respect to the object.

Next, it is necessary to determine the change in gr p. This will be due partly to the relative motion of the
finger with respect to the (Lmn) coordinate system and partly to the restoring forces in the finger joints.

The motion of the fingertip is d p, where dt is determined by the methods of Section 3.3. The motion of
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d the (,im,n) coordinate system is given by dbp and therefore the rclativc motion is (drp - dbp). 11e resulting

,. -element vector is used to detcrnine the elements of A[Jt]'t in thc same way that the motion of the

contact point on thc object dctc rrincs the elcments of [Jb]t. Thcrc may also bea contribution to Agrp due
to rclativc motion between thc (ab.c) coordinatc system and the joint space in which dq is defined. However,

- this will depend on tie particular finger design and is not considered in the current analysis.

"The restoring forces in the finger joints are given by

Agq = [Kq]dq

- where dq is found using the methods in Sections 3.1 and 3.3. Thc contribution of these restoring forces to

Agfp may becomputed for each of the constraint cases discussed in Section 3.3.

For the first case in Section 3.3. in which the motion of the object exactly determines the motion of the
finger, the contribution of Agq to Agfp follows from equation (3.9).

Agrp = [P]'t&gq (3.11)

For the second case, the contribution of the restoring forces in the joints to the change in the forces at the
fingertip is [P']-tAg;. It does not matter which columns are removed from [P] provided that the

remaining square matrix, (P*], is non-singular and that the elements of 9 q corresponding to the eliminated

rows of ( P ] are removed from g*.

For the third case the problem is statically indeterminate and there are not enough equations for the
number of unknowns. If no motion is possible in one of the directions of the (.m.n) coordinate system, the

change in force for that direction may reasonably be set to zero. This is equivalent to removing null rows and

columns from the compliance matrix in (Intn) coordinates. If the remaining compliance matrix is still
singular "r in other words, if there are remaining non-zero (but coupled) motions in dfp then a useful
techniqu i, to add "virtual joints" to the finger to provide enough equations. The virtual joints can be

chosen in directions orthogonal to the existing joints. The motion about their axes is zero and consequently,
the change in the torques about their axes will also be zero.

For the particular case in which fingers with three degrees of freedom are used to hold an object, with
point contact between d- t. fingertips and the object, the relations above reduce to

dq = [P ] [ibIdb

A(JbJ t = (0]

A g = [Jb]t[M]t([Jf ]-tgr . [P]-tgq)

Ife in addition, it can be assumed that A[Jf "t is negligible, the change in the force upon the body

becomes

a- L
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Agb = Jb]t[M]t[P]t[(Kq](P]l(M](Jb]db

or,lctting [Pp1([M][Jb] = [J]

For a grip with m fingers, thc net change in the grasping f'orce becomes
m

Agb= (Jit Kf,][pJlIdb

or Ab= [Kb]db (3.12)

Three Fingered Hand
For a hand with three fingers, each having three degrees of freedom and point contacts at dhc fingertips,

Salisbury [21 derives an equivalent expression to (3.12). If the finger axes, (abc) are chosen to parallel to
(x>,,z) and their origin, f. is moved to the contact poi nt, 1k. then

(Wx) (3x6) (Mx)

where [I ] is a 303 identity matrix and [ R] is given in Appendix A. The jacobian. C J ] for cach finger

are assem~led into a single grasp jacobian (see Figure 3-5). The 6x9 grasp jacobian is augmnrted by a Rx9
matrix that gives the dot products between the forces exerted by opposing fingers. These "pinch" terms are
related to the magnitude of the internal forces on the object. The resulting 9x9 grasp matrix is [G]-t. The
fingertip displacements are concatenated into a single 9x1 vector df and the vector of resultant forces, with
respect to equilibrium. on the object becomes f b =Agb. The 3x3 finger stiffness matrices are also assembled
into a single. block-diagonal Wx matrix, [(K].

FKf
[K] ------------[ I Kf I

IKf

The relationship between displacements of the fingers and the net restoring force upon the body. f b ,may

then be expressed as

fb=[GJ-t{Kldt

and the stiffness of the object computed as
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11wc relationship between the above expressions and equation (3.12) can be seen by dropping thc "pinch"

tcrins from CG ] and f b, and by allowing an arbitrary numnbcr of fingers which hav'e arbitrary orientations.
(A, w ith respect to the (x.),, ) system:

I A A I A I ] Kf I At ICRAPt
------------- I --------------------- -----

RA IRA IRA I I.J Kf I A' I[RA~t

I Kf I At I[RA]t

I Kf

Multiplying the partitioned matrices above gives

[Kx,]ZKx,][R, t

(Kb] mn"

[Ri]Kxi] I [R][Kxi[Ri]t

(where [Kxj] =[A 1][Kf3[Aj]t)

which is identical to (3.12), when [C i are given by (3.13).
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Grasp Jacobian for Three Fingers: .

(Gt lI fl

rb = G
-

] t  f = R I R I R f2

P P Pj f3

or:

fx 1 0 0 1 0 0 I1 0 0 fix
fy 0 1 010 1 0 0 1 0 fly
fz 0 0 110 a 1 0 0 1 flz

-- - - - - - - - - - - - - - - - - - -

mx -0 -rz ryl 0 -rz ryl 0 -rz ry f2x
my rz 0 -rxl rz 0 -rxi rz 0 -rx fZy
mz -ry rx 0 1-ry rx 0 1-ry rx 0 f2z

p12 r12 I -r12 1 0 0 0 f3x!
p13 r3 I 0 0 0 -r13 f3y:
p23 0 0 0 r23 -r23 f3zJ

In the above:
[R] arc cross-product matrices such that if r = (rx, ry, rz) are vectors from the origin of the

global coordinate system to each of the finger contact points, and f are three-component
force vectors then L]f = rxf.

[P ] are matrices formed of 3 element vectors r i j which point from finger i to finger j.
The products [P] f produce three scalar internal forces, p i j, which measure the "pinch" between fingers
i andj.

Figure 3-5:
(from Salisbury [61)

A4 7- wI6R 0
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4. ACloser Look at Contact. Conditions

-* -fingertips----

Finger pointed

curved
possible fingertip

I w
flat

14

Object very soft

5!

soft, cured

Figure 4-1: Examples of fingertip geometry

Contact conditions between the gripper and the object depend on friction. adhesion, surface geometry and

surface deformation under load. The contact conditions have a profound effect on the strength and stability

of a grip and determine the extent of kinematic coupling between the gripper fingcrtips and the object.

Previous analyses [1, 2, 3, 4, 61 have used the assumption of hard surfaces and small contact areas to treat



34

the contact areas as point contacts. This turns out to be the simplest case to handle analytically, but it

bccomcs inaccurate when the radius of curvature of thc fingertips is not small compared to the size of tie

object or when the fingertips deform. The effects of differcnt assumptions concerning the fingertip geomctry

arc shown in several examples below. In a later section, the effects of different friction models are discussed.

Models that may be used for the fingertip gconictry include: point contacts, hard curved contacts, flat

contacts, elastic curved contacts and very soft contacts. These models are shown schematically in Figure 4-1.

4.1 Point Contact

In a point contact with friction, forces are transmitted between the fingertip and the object but torques are

not. Similarly, translation of the fingertip is coupled with that of the object, but rotation is not. The result is
-that the coupling matrix, [M], is a 3x6 matrix in which the left partition is a 3x3 identy matrix and the right

partition is zero.

In point contact, there is no rolling motion and consequently no movement of the contact area upon the

object or the fingertip. As the object is displaced, the fingers can only rotate about the contact points.

Consequently, there is no change in the jacobian [ Jb ] t and only a rotational change in C J f " t as the object

is displaced.

4.2 Curved finger contact

A hard, curved finger is similar to a point contact in that the contact area is small so that forces may be
transmitted, but torques may not. The main difference arises from the possibility of the fingertip rolling upon

the surface of the object. As the finger rolls, the location of the contact point will shift. This shift produces

non-zero terms in the differential jacobians, A [J b ]t and A [J f ] -t introduced in Section 3.4.

A general analysis of rolling becomes quite complex. As a first step, if we assume that the finger does not

twist about its own axis, (perpendicular to the surface of the object) then for small displacements the problem

can be approximated by a two-dimensional one involving an instantaneous plane of rolling. The plane is

defined by the common perpendicular (n in Figure 3-1) and the vector of translational motion of the initial

contact points, bp andfp. In the following discussion, second-order approximations are derived to express the

translation and rotation of the contact points on the fingertip and the object as functions of the fingertip and

object curvature.

Figure 4-2 shows the cross sections of a finger and an object in the instantaneous plane of rolling motion.

The fingertip and the object profiles may be described parametrically as rr(s) and rb(s), where s is equal to the

arclengh along either curve. The conditions for pure rolling, without slipping or losing contact, are

1. There will be a common tangent plane at the points of contact.

2. The contact points on the fingertip and the object (fp and bp in Figure 3-1) must have the same
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Finger surface

Object surface a
b common tangent

5 arclength

As must be equal for
finger and object

Figure 4-2: Rolling contact

translational velocity. For a differential motion this means that the translational components of
d bp and d must be equal.

3. The arc length, Ss, traversed along rb(.t) and rf(s) must be equal as the fingertip rolls on the
object.

The tangent at any point. s. along each curve in Figure 4-2 is giver, by the unit vector
_dr

At the contact point, the tangent is the same for both curves so that

drf drb

ds d1
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After the fingertip rolls a small amourt, the new contact point will bc at the location r on the body and the
new tangent will have the direction

Ui =" dr .

ds

Thc contact point on the fingertip will be at the location r, with respect to the finger coordinate system and
the direction of the tangent will be

drLf -- ---s

For pure rolling it is required that 8 sf = Ssb, where for small motions. Ss - VA-rAr Thus for a
small rolling motion, the contact point translates Art upon the body and rotates through the angle between
Ub and u'. At the same time. the fingertip must translate by A r. - Arf (the distance between bp' and fp')
and rotate through the angle between u; and ut. The translations and rotations are functions of rq(), rb(s)

and 8s.

A r and u' may be expressed as Taylor's series expansions in rts) and 8s (Appendix B). To look at the
effects of curvature, terms involving the first and second derivatives of r and rr are kept in the expansions.

translation of bp with respect to object:
r drb s+ s dr du (s) 2  (4.1)

r s  + 2 ds s+ ds 2

translation of fp' with respect to object:
ISS d.2 rb  2=rr

Arb - Art = _ d _ L_; ) (4.2)

rotation of bp with respect to object:
ubXu,=6(dbXd2 rt.b d ds2  (4.3)

rotation of fp' with respect to object:d2 r  ddr 2 d r  d r
bu ,xut &s.*((d r d 2rb )xu) +(8s)2(-- .-- X -) (4.4)

In (4.4) and (4.1), u = )Ub( = Ur-

For a given object shape. the fingertip curvature determines the magnitudes of the translation and rotation
of bp and the translations offp andfp', as the fingertip rolls through the small angle given by equation (4.4).

The above equations can be simplified by dropping second order terms. Since Jul = 1, equation (4.4) will
be dominated by a term on the order of

Ss( d2 rf d' rb
-s ds
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Tlic second term in (4.4) is at least a factor of 8s smaller and, for infinitesimal motions, may be dropped.

In (4.2). tie translation offp' is also smaller than the rotation vof the fingertip by a factor of 8s, which leads

to the conclusion that for infinitesimal rolling, the fingertip may be considered to rotate about de contact

point, fp. Thc translation of dhe contact point on the object, bp, contains one term on Lhc order of Ss, and a

-*second term which may be dropped. The simplified equations are

translation of contact point with respect to object: A rf Arb u s (4.5)

dr_ d2 rb
rotation of contact point with respect to object: u Ubx u Ss( X d ) (4.6)

d 2 rr d' r b  XU

rotation of fingertip with respect to object: urxub z ((d 2 d 2  ) (4.7)

4.2.1 Effects of rolling motion

The meaning of the above equations becomes apparent in Figures 4-3 and 4-4, which show a finger with a

curved tip of constant radius rolling on a fiat surface on an object. For convenience, the coordinate systems

are chosen so that (a.b). (4m), and (x.y) all lie in the same plane. In Figure 4-3 the radius of curvature, rc, of
the fingertip is large while in Figure 4-4 it is small. In both cases u, = ub = (1)i + (O)j. Since the object is

flat, the second derivative of rb is zero and equation (4.7) reduces to 88f= Ss(1/r c) (Appendix B).

The fingertip undergoes virtually same motion in Figures 4-3 and 4-4, but there is a significant difference

in Arb and A rt between the two cases, which stems from the difference in B5. In Figure 4-4, there is no

appreciable change between rb and rb.Consequendy A[Jb]t = []. There is also virtually no difference

between rf and r , when expressed with respect to the (ab) coordinate frame. Consequently A[Jf]-t

contains only a rotation term resulting from the rotat;ut. of the (ab) coordinate system with respect to the

contact point and the (x),) system. In other words, as the radius of curvature becomes small, the model

reduces to the case of a pointed finger rotating about its tip.

In Figure 4-3, Arb and Aef are significant. Consequently, A[Jb]t contains a translation term and
7-4 A[Jf]-t reflects both the rotation of the (ab) system and the addition of Arf to rf. The way in which such

terms are incorporated into the elements of the differential jacobians is discussed in Appendix A.2, and an

example is given in Section 5.

A flat-tipped finger can be seen as a limiting case in which the radius of curvature becomes infinite so that

A rb and Arb become infinite and produce an infinite displacement of the contact area for any rotation of the

finger with respect to the object. In practice, of course, the contact point will jump to the edge of the fiat

fingerup, at which point the radius of curvature becomes zero rather than infinite.

41
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Figure 43: Cross section of a large-radius hemispherical fingertip on a flat object surface

4.3 Very soft finger

The bottom fingertip example shown in Figure 4-1 represents the extreme case of a compliant fingertip
prcssing against the object surface. In this model it is assumed that the fingertip conforms to the object

surface, and adheres slightly. Such characteristics are found in many natural gripping surfaces, including the

fingertips of the human hand. The coefficient of friction for such a fingertip will be high (greater than one).

However. since deformation and adhesion are the primary mechanisms, it is not advisable to assume the

Coulomb friction law.
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Figure 4-4: Cross section of a small-radius hemispherical fingertip on a fat object surface

The soft finger model is further specialized with the assumption that no rolling occurs and that the

compliant medium at the fingertip is elastic. With these assumptions the fingertip becomes a less accurate

model of human fingertips. Human skin is visco-elastic and after being deformed will not generally return to

its original position. Depending on the curvature of the object being held and the degree of adhesion present,

the human fingertip %ill also roll slightly upon the object. exhibiting a rolling resistance of the kind discussed

in Section 4.4. Nonetheless the elastic soft-finger model is useful to demonstrate a limiting case in which

there is complete kinematic coupling between the fingertip and the object.
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Figure 4-5: Elasic fingertip in contact with object surface

Figure 4-5 shows the fingertip in contact with the surface of an object. The fingertip material is assumed
to be much softer than that of either the object or the finger substrate, which are treated as rigid bodies. For
convenience, the finger (aobc) coordinate system has been moved to the interface between the fingertip

material and the finger substrate. As explained in Section 3.1, the forces, displacements and stiffness

characteristics of the finger can easily be transformed from another coordinate system to the one chosen in
Figure 4-5. The (Lmn) coordinate system remains, as usual, at the contact area between the fingertip and the

object, with the n axis normal to the object surface.

The grasping forces at the object surface, gbp. can be expressed as integrals of the stresses over the contact

area:
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The elastic contact represents a compliant coupling in which small motions of the finger with respect to

the object arc possible in any direction. Such relative notions produce changes in the above forces and a

mode! of the system permits the deflection/force relationships to be expressed as the stiffress of" the contact.

The fingertip can be treated as a short elastic member clamped between two rigid boundaries. To obtain

0 the exact stress field for such a problem is a formidable task - even if the assumption is made that the

material is perfectly elastic and isotropic. Numerical results could be obtained using a finite element analysis,

but the analysis would be time consuming and would have to be re-computcd for different cross sections and

materials. T'he problem can be simplified by observing that the stresses at any given location within the

material are of little interest, provided that

•estimates of the integral quantities can be computed at the object surface

. - • . . . . . .. • - . - * . , - . . . . -. . . - . * - * . . . . . . .
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* the combined stress field nowhere cxcecds the strength of the material

* the normal stress, un, never becomes sufficicntly tensile to cause the fingertip material to
separate from the object surface.

The last requirement can be satisfied by assuming a large grasping force normal to the object surface and/or
some adhesion bctwcen the fingertip and the object. If one edge of the fingertip does start to separate from
the object when the finger rotates slightly, then the finger is starting to roll.

Since an exact elastic solution is impractical (and would in any event be an approximation to the visco-

elastic behavior of compliant polymers ane skin-like materials) an approximate elastic solution is used to
estimate the force/deflection relationship for the fingertip. The behavior of the fingertip in shear, torsion,
compression and bending is discussed below, and the separate solutions are superposed to produce a 6x6
stiffness matrix for the contact.

Bending stiffness and resistance to rolling

The bending model for the elastic fingertip is similar to that used in classical beam theory. A rotation
about the a axis by the finger produces a rotation in the material of 80/1 per unit thickness. The bending

strain and stress at a distance in above the centerline are

En -- I and cr, = Eenn
I

where E is the modulus of elasticity. As in beam theory, it is assumed that plane sections remain plane and
"ln = T n . It is also assumed that since the stresses rm, am and all are zero at the surfaces of the
material that they are approximately zero throughout. This assumption is somewhat less supportable than in
beam theory since the elastic element cannot be considered slender. However. it is not actually necessary that

ri,, am and all be zero everywhere but only that their resultant does not significantly affect the estimated
bending rigidity of the element. The bending rigidity may then be found by equating the energy stored in
rotating the finger with the energy stored in deforming the material

1/2kel(601)2 = 1/24 annenndV =2

or kel=

where Im is the moment of inertia of the cross section about the m axis and V is the volume of the material.

The bending stiffness for rotations about the m axis is similarly found as

-El 1
I

As mentioned earlier, the maximum bending moment that the contact can sustain is limited by the
adhesion between the fingertip and the object surface. The limitation is easily demonstrated for the example

. -_ _, r cf-. _.Lr.. C _ _ *~ %A ! ,P . - A .
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-of a square contact area of length w on each side. Referring to Figure 4-6, a normal force of magnitude f?
produces a uniform contribution to the normal stress of

= - += (compression).

A bending mnome it of magnitude fe, produces a contribution to the normal stress that is maximum at the
edges of the contact.

c4 = ±L-" - =  --wy - (b- tjong)

. The combined normal stress will become tensile at one edge when

wfn> 6A

Thus, unless the adhesion between the fingertip and the object is able to resist tensile loads, the finger will
start to roll whenever the berding moment is more than one sixth the normal load times the length of the side.

For small contact areas the fingertip is likely to start rolling unless considerable adhesion is present.

Shear stiffness and resistance to slipping

For a beam with an end load, the variation in the moment over the length of the beam is balanced by a
distribution in shearing stress over the cross section of the beam [17]. For the elastic fingertip, however, it is
assumed that the variation in the moment produced by a shear force in the (ab.c) system is negligible
compared to the effect of rotating the finger. Consequently the bending moment is approximately constant
over t and the shear stress is assumed to be uniform over the cross section. The shear stiffness is found by
equating the energy required to displace the finger in shear with the energy stored internally in the material.

, (881)21/2kem(8.) 2 = 1/2 T e GAV =GA

GA
or km -

In the above, G is the shear modulus of the material and A is the cross section area, wh.

The maximum shearing force that the contact can sustain is limited by the shear strength of the
fingertip/object interface, which depends on the bonding strength between the fingertip and obiect materials
and on the area of intimate contact between them. The area of intimate contact is generally much smaller

than the overall contact area, A, and depends not only on the current normal force, f?, but on such factors as
how clean the surfaces are, how rough they are, and how long they have been held together. In general, the

shear strength of the contact will be some fraction, ,P, of the shear strength of the fingertip material. The

fraction will be a function of (but not directly proportional to) the normal force, and slipping will occur when

7m or 'rl, exceeds that fraction.

rSI- ftV, ...)ryie d
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Compressive stiffness

Displaccment of the fingertip toward thc object results in a uniform compressive Strain, - E,, across the
cross section. 'llic compressive stiffncss is round in the sa n way as the shear stiffncss, with G replaced by E.

I A

Torsional stilfness and resistance to slipping

The torsional rigidity of a cylindrical member can easily be found as
-i

,,' Grken = rtr 4 = GIp"'
2

where ro is the radius of the cylinder and/p is the polar moment of inertia [171. For non-circular cross sections
the expression becomes more complicated due to warping of the cross sections, although for the present case
the warping may be negligible since t is small and since the material is constrained by a rigid boundary at each

end. For a bar of elliptical cross-section the torsional rigidity per unit length has been determined as

ko = GA'
41r2 l1

and it has been found that this formula holds approximately true for other compact cross sections 118).

For a round bar, the shear stress in torsion is

en= " (4.8)

Thus, if the fingertip were a cylinder ending in a circular contact area, slipping would begin at the periphery
when

f =  'r (4.9)

(where rip is given above for shear loading.) Once slipping has occurred at the periphery, the fingertip will
not return to exactly the same orientation when the torque is removed. As the torque is increased, the region
of slipping will spread from the periphery toward the center. The phenomenon resembles the yielding of an
elastic/perfectly plastic bar in torsion. At any stage, the moment balance is given by

in =  2V Imr2dr+ 2r1t ipr2dr. (4.10)
0 r'tip

The above equation can be integrated and condensed by expressing -'rm and rslip in terms of r and the
angle of rotation of the finger, do.

i- : : " ....-. ... -.- - -,- . ,,' .. . ,- . .- .- . .- -. .'- - -
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27rGd, r

The result for the torque is

I= jr dip( ro - r-

Thus, the torque required for complete slipping is ' the torque required to initiate slipping at the periphery,

although this would theoretically only be reached for an infinite rotation, do, or dec, of the fingertip. For a

square or rectangular contact area the qualitative behavior is the same, with slipping initiating at the periphery
and spreading inwards. However, the expression for fe, becomes more complex due to the more involved

expression for Tb.-

Fingertip Stiffness Matrix

The above stiffness terms form the elements of a 6x6 diagonal matrix [Kc] where
G A

Kc1 = Kc22  GA (4.11)

Kc33 = EIA (4.12) :1

Kc, = E (4.13)1 4i

Kcs = E (4.14)

GA' Kc<Gp (4.15)

L.]

If I were larger than w and h, then shear loads would produce bending moments that varied along i, and

bending loads would produce shear deflections, as in classical beam theory. The result would be ofT-diagonal

terms in [Kc]. -l

4.3.1 Effects of deforming fingertips

jThe comparative importance of the above quantities can be determined for a fingertip of given
proportions. The table below shows the results for two fingertips. For the first, w = h = 1.0 cm and t = 0.5

cm. In the second w = h = 2.0 cm and i = 0.5 cm. The modulus of elasticity. E, is assumed to be 250 N/cm2

and Poisson's ratio is taken as 1/2. so that G = E13. These are typical values for rubber. A force of 4.ON (a

little less than one lbf.) is used to produce deflections for comparison.

-.
'1

- ..-i .i- " ...."'- -' " " . ... . ' :' , - - " - -- • :I
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'able 4.1: Soft fingertip dcflcctions for 4.0 N load and lcm 2 and 4cm 2 contact area
-J

Fingertip material properties: E = 250 N/cm2 . = 0.5, G = 83.3 N/cm 2

w=h= 1.0cm, =0.5cm w= h=2.0cm, 1=0.Scm
,1

Kcn, Kcn 167 N/cc:' 667 N/cm

deflection for 4.0 N 0.024 cm 0.006 cm
shear force A,

KC33  500 N/cm 2000 N/cm

deflection for 4.0 N
compressive force 0.008 cm 0.002 cm

Kc,, Kc55  42 Ncm 672 Ncm

rotational deflection
for 4.0 N at 0.096 radian 0.006 radian
1.0 cm lever arm

Kc6 27 Ncm 432 Ncm

torsional deflection 0.15 radian 0.009 radian
for 4.0 Ncm torque

For the smaller area, the rotational stiffness terms are much lower that the translational terms and the
fingertip is clearly less constrained wit respect to rotations than translations. However, the bending and

torsion stiffnesses increase as the square of the contact area, while the shear and compressive stiffness increase
linearly with the contact area. Thus, for the larger contact patch, the rotational and translational stiffnesses

become comparable. If w and h were doubled again, bending and tomional deflections would become
negligible in comparison to shear deflections. This result matches what one would expect intuitively.

If the grasping force is varied proportionately with the contact area, then, as the contact area becomes
small, the fingertip begins to behave like a point contact in which significant rotations are possible but
translations are not. As the contact area becomes large, rotatons are negligible compared to shear deflections.

If the grasping force is held constant for different contact areas then the contact becomes much less compliant

as the area increases, and rotational deflections become negligible faster than translational deflections.

For the forces given in the table above, unless some adhesion exists between the fingertip and the object,
the bending moment will cause the fingertip to roll for both the 1cm- or the 4cm 2 area. The largest bending

0: . .. - . :. . . . . - . . .".... .. . . .



47

moment that the contact could sustain without tension is 0.67Ncm for the 1cm2 case and l.33Ncm for the I
4cm 2 case. In torsion. depcndiig on the shear strength of tie interface, tie contact will probably slip for the

1cm 2 area but might not fir the 4cm- area. If the shear strength is roughly equal to 4.0N/cin2 in the first case

(corresponding to a coefficient of friction of 1.0) and 15N/cm 2 in the second, (corresponding to a coefficient

. of friction of 1.5) 3 the maximum torques that can be exerted are 1.7Ncm and 5.3Ncm respectively. This

supports the idea that a soft finger with a small contact area can exert torques about an axis normal to the

contact surface more readily than it can exert torques in the plane of the surface. For a soft, curved fingertip,

as discussed below, the difference is more pronounced.

Once the fingertip stiffness matrix has been computed, the net compliance matrix may be formed by

adding the compliances for the finger and the fingertip.

[Cf] = [Jfq][Kq]-[Jfq]t + [Kc1 1.

This matrix is invertible and therefore, the restoring forces at the contact become

Agfp = [Cf ]-dbp

Using equations (3.5) and (3.6), the changes in the forces at the finger joints are Agq = [Jfq]tg rp, and

the finger motions are d= [Kq] 1 A gq.

4.4 Soft, Curved Fingertip

The hard curved fingertip and the very soft fingertip represent extremes between which real, deformable

fingertips may be expected to lie. Human fingers and rounded robot fingers with rubber surfaces exhibit both

rolling and substantial deformation. The analysis of such fingertips becomes quite involved, combining the

rolling calculations of Section 4.2 with the deformation calculations of Section 4.3. A complete model is not

attempted in the discussion below, but the properties of soft, rolling fingers are discussed and it is seen that

they are bracketed by the models developed in the last two sections.

A number of insights can be gained by considering the analyses applied to the rolling of rubber tires and

metal cylinders or spheres. For a hard, elastic sphere rolling on an elastic surface, the pressure distribution is

described by the Hertzian contact model of solid mechanics, which predicts a hemispherical pressure

distribution [18]. For the much larger deformations that occur when a soft, curved finger presses against an

object the distribution is expected to be qualitatively similar. The pressure will be maximum at the center of
the contact, diminishing smoothly to zero at the periphery. For progressively softer fingertips, the pressure

distribution becomes more uniform, especially toward the center of the contact area. In the limiting case, the

pressure is essentially uniform throughout, as assumed in the very soft finger model described in Section 4.3.

The pressure distributions are compared for elastic, soft, and very soft fingertips in Figure 4-7. -,

3

Accordirg to the Coulomb theory. the coefficient of fricton would be independent of the contact area, but for compliant materals it
is generally ncit in(. ;,enden.
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ro (radius of contact)

spherical elastic 11inges-tip-P Ir (Hertzian contact
hemispherical
distribution)

P( W soft curved fingertip

Pvery soft fingertip
Pf , (uniform distribution)

Figure 4-7: Pressure distributions for elastic, soft, and very soft fingertips

For a perfectly elastic curved finger, it is impossible to transmit moments in the plane of the contact since

the finger rolls easily upon the object. Thus, in the absence of rolling resistance, the soft curved finger would

behave in the same manner as the hard curved finger discussed earlier, tle only difference being that rf

would vary due to flattening of the fingertip under load. If the degree of lattening could be predicted as a

function of fingertip loading, then the methods discussed in section 4.2 could be used to predict the motion of

the finger and the contact point. Elastic flattening formulas have been developed for cylinders and spheres,

but these are unlikely to give accurate results for a soft fingertip.

In practice, there is generally a resistance to rolling. At low speeds, the rolling resistance is due largely to

hysteresis losses and microslip at the contact area. Rolling resistance is an important subject in the literature

on wheels and tires and is discussed at length in [19, 20, 21]. For an elastic sphere or cylinder rolling upon a

plane surface, he deformation of the material results in a hysteresis loss which can be used to derive a

"coefficient of rolling resistance" 119). Mi roslip results from the elastic strain of the fingertip material as it is

pressed against the surface. If the fingertip is loaded with a normal load. f., against the object surface, the

material ahead of the centerline of the contact will spread forwards slightly and the material behind the

centerline will spread backwards slightly. The spreading produces regions of microslip toward the front and
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rear-of the contact area. In the absence of-tangential forces, the strains, and the shear tractions that result

Crom them, must cancel each other. When a tangential force is present. there will be a region of sticking

toward one side of the contact area, and microslip elsewhere. The microslip results in rolling losses and

"creep." Thc end result is that soft curved fingcrtips do not rotate quite as freely with respect to the object as

-pointed or hard curved fingertips do.

The static resistance to slipping of the soft, curved fingertip will be similar to that of the very soft finger of

Section 4.3, except that since the pressure distribution is not uniform over the contact area, the value of the

stress at which slipping occurs also varies over the contact. As in Section 4.3. the interface shear strength -r.1.

may be expressed as a fraction of the material shear strength. where the fraction, ,P. is a function of factors
including the normal pressure and the surface roughness. Since the pressure is least at the edges of the

contact, slipping may be expected to initiate there.

For loads in the plane of the contact, the shear stress may be uniform inside the region where there is no I
sliding, but will have an upper limit of outside the region. j

For a moment about the axis normal to the contact, the shear stress inside the sticking region will have the

same distribution as for the very soft finger, the magnitude at any point being proportional to the distance
from the center of the contact as in equation (4.8). In the slipping region. the shear stress will again be equal

to the upper limit of , A cross section of shear stress distribution is shown in the lower part of Figure 4-8.

The distribution for the very soft fingertip of Section 4.3 is shown in the upper part for comparison. The

maximum torque about the axis of the finger is equal to the polar moment of the shear stress shown in Figure

4-8.

fen= / 21'mlr 2dr + 2 's,,pr2dr (4.16)
0 rsilp

where rl({ ) is proportional to r and rslip(r) is a function of o,,r)

Thus, unlike the hard curved finger or the pointed finger, the soft curved finger is able to exert small torques

about its own axis.

4

4-

-I% aA



50
V

so >

(uniform pressure)

ro

)my Soft curved f inge rtip

ro =radius of contact area

Ni p =radius of sticking region

T(r) =shear stress inside sticking
region (proportional to r)

• rw = largest possible shear stress
(function of pressure)

Figure 4-8: Maximum shear stress for moment about finger axis

2. L.: 4-.C - 4 I - '
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5. Examples

In this section. results from the last three sections are used in three examples that also illustrate some of
-the differences between pointed, curved and soft fingers. Figure 5-1 shows three rectangles, each held by two
fingers. In the first case the fingers are pointed, in the second case they have finite radii of curvature and in

Whe third case they have very soft tips that adhere to the surface of the rectangle, In all three cases, the fingers
are assumed to have three degrees of freedom. being restricted to motions within the plane of the paper. For

simplicity, it is assumed that the finger joints correspond to translations, a and b, and a rotation, 9c, in the

(a .bc) frames.

The sizes and orientations of the rectangular object and fingers, and the finger stiffnesses. (Kf], are
identical in each case. However, the different contact conditions produce substantially different results for the
mobility, stiffness, strength and stability of the grasp.

In each case the change in the resultant grasp force on the object, Ag, is calculated for small displacements
of the object. The grip stiffness is computed and ihe maximum force and torque that the grip can resist -

V without slipping is calculated.

5.1 Pointed Fingers

The transformation matrices, Jb), EM], [Jf]. and [Jq], are given in Appendix C for the left or first
finger. As the object is momed an arbitrary amount, db, the motions at the contact points on the object are
given by dbp = [Jb]db. Premultiplying by EM] gives the vectors d,, which contain just the first three
elements of dbp since, for point contact conditions, only the translations are transmitted.

The fingers have three degrees of freedom and consequently dq = [dqa, dqb, dqc ]. A motion, dq,
produces a motion dfp at the fingertip, given by equation (3.3). The elements of df p and dc are compared

below for the left and right fingers. The (Lm,n) coordinate systems are shown in Figure 5-1.

Matching dc, with drp, and dc2 with drp2 reveals that dz + fd~y = 0 and dz - fd~y = 0 or,
dz = dRy = 0. In other words, the object is constrained by the fingers to move within the plane, except for
rotations about the x axis. In the following discussion it will be assumed that the object is given displacements
in the x and y directions and a rotation about the z axis. Thus, dl and din, will be zero and the only motions

transmitted to the fingers will be dml, dn,, l and dn2,

TIhe procedure for calculating the finger motions, the changes in the finger forces and the change in force
on the body is given below for the first finger. The contribution from the second finger follows from

symmetry.
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a), 
b2b , ... 12,I

nI

Pointed fingertips -.

c~M 1--2 b),z , - - '2 a

Rounded fingertips

b , 12 6 b2

I %ZOF
I - z 2 j- a

I _ E

Soft fingertips
Figure 5-1: Holding a rectangle between two fingers - 3 examples
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dC1 dfpl dfp 2  d"

dl dz+ dy 0 dqb-rdqc dy+ *dOz

dm dy- dez dqb+ fdqc 0 dz- dy

dn - dx - dqa dqa dx

dOl dqc 0

dem 0 dqc

don 0 0

Table 5-1: Motions of left and right finger and object contact areas (pointed fingertips)

5.1.1 Procedure for Left Finger

The first step is to determine the motions of the first finger given drn1 and dnl . A motion in the dm

direction can be accommodated either by a movement of the finger in the h direction or by a rotation about C.

In practice, both will occur and the contribution from each will be balanced to minimize the potential energy

of the finger. The two rows of CJfq] that relate finger motions dqb and dqc to do: and dn are extracted to

form the 3x2 matrix [P]. Following the method in Section 3.3.1.2, a Lagrange multiplier matrix, [L] is

assembled from C Kq ] and C P ]. The matrices and the matrix equations are shown in Appendix C. Inverting

'L) produces the finger motions, dq. Multiplying the finger joint motions by [Kq] determines the chances

in the joint forces.

The changes in the forces at the fingertip, 8gfp, depend both on the restoring forces 8 gq and the change

in geometry. A(Jf]-t, due to the motion of the finger with respect to the object. The motion of the (/,rn)

coordinate system is given by dbp and the motion of the fingertip is given by CJfq] dq. The translations of

each are the same, but the finger rotates relative to the object by the angle

8= 8ol- SOc.

which appears as a rotation term in A [J f'] " in Appendix C.

For a grasping force off in the a direction and for a motion (dx, dy, dgz) applied to the body, the change

in the force applied by the first finger to the object is shown in Table 5-2.

When the second finger is added, the expressions for the change in the force on the object become simpler

due to combinations and cancellations of symmetrical terms. The contributions to 8gy from each finger

cancel for rotations, dgz, and add for translations. dy. Similarly. the contributions to 88z from each finger

cancel for motions, dy, and add for rotations dgz. The final result is given in Table 5-3.
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8g, = -kadx

agy = (af- P)dy - (f + f(af -f0))dz

a~z 0

8gey 0

e = -(af-8)dy + f(fV+ j-(af- 0))dOz

where a and ,# k= b kc ,

weekbr}2+ kc kb r2+ kc

Table 5-2: Contribution from left finger to 8 gb (pointed fingertip)

gx = -2 ka dx

8gy =2(af- ),y

gaz = %(f+ f(af-#))dz

Tnblc -3: Change in gb due to motions dx, dy, and d~z (pointed fingertips) -

5.1.2 Discussion

Whenever any of the above quantities becomes positive, the grasp will be unstable for infinitesimal

displacements in the corresponding direction. Thus, if kc is small. (kc <frf). the change in the grasp force for
a motion in the y direction will be positive, tending to continue the motion. This result matches one's
intuition that a rectangle squeezed between two fingers will be unstable if the finger pivots freely, without

springs, about axes c, and c,.

Similarly if */3 < (f+ af), the rectangle will be unstable with respect to rotations about the z axis. This

result is less intuitively clear but it becomes apparent if kc is very large, in which case the fingers do not rotate

about their c axes. For this case, a -. 0 and ,3 kb. If the object is rotated by d; the change in the torque

upon the body is

(wf- kb)dez.

A --1 , . o . . . o . . -
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Ilhis is exady the rcsult obtaincd earlier in Section I for the rotation of a rectangle squeezed between two

lingers, where kb = k, and -r.

5.2 Curved Fingertips

- f b Fingertip

J bPI  
ur"-

ac

I- 

.a

r a

_ p Obje SfceS a
bU

J

w

~~ rbi

0

jX

Figure 5-2: Curved finger before rolling

4Most of the results from the last example also apply for fingers with curved surfaces. The difference is that 0
the contact point ;s no longer fixed with respect to the object and consequently A [ J f ]t is slightly different

from above and A[Jb] t is no longer zero. The new matrices are giver. in Appendix C.

As with the pointed finger example, results are derived for the first or left finger. In the current example.

the algebra has been simplified by assuming that the (ab.c) finger coordinate systems are also the centers of
curvature of the finger Ups. The rolling condition is therefore as shown in figures 5-2 and 5-3, before and
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F b Fingertip

rff
a' - 5sj

/ r;

_fp Object Surface

IIS
bp1

w I  I b'

I

0x I
Figure 5-3: Curved finger after rolling 80 with respect to object

after the finger has rotated a small amount. 60, with respect to (Lm.n) coordinate system on the object. As the

figures show, .Ss = rf6O.

Since the center of curvature of the finger is also the origin of the (a,.c) system, the translation of the
contact point exactly cancels the product 80xrr. The contribution from the left finger to Agb is shown in

Table 5-4.

When the results from the second finger are addcd, the changes in the force upon the object are as shown

in Table 5-5.

I i

I I

. .
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agx = -kadx

6g = (af - f)dy - (f + f(af- P))dz

S8. =0

Sge, =0

Sgoy =0Sge, = 0 f-)W

Sg9 z = ((af-/6)w2 + 2fl-ar)w -4frf)d9 z - '((af-ft)w4.4afr)dy

kb r+ kk

Table 5-4: Contribution from left finger to Sgb (rounded fingertip)

6gx  = -2kadx

SgY = 2(af-,8)dy

=((af- P )w2 + 2f-

Table 5-5: Change in gb due to motions dx, dy, and d8z (rounded fingertips)

5.2.1 Discussion

The results in the x and y directions are identical to those for the point-contact example but the torque

about the z axis has changed. As in the previous example, the expression for torque about the z axis simplifies

for the limiting case in which kc is large compared to k1 The change in the torque about the z axis reduces to

(kb w2 + 2fw- 4f rf)dOZ

4 In the above expression, if rj = y then the last two terms cancel each other out leaving only the restoring

torque. - 4 kb w2 88. In other words, the translation of the contact point due to rolling of the "inger with
respect to the object exactly cancels the effect of rotating the object. Tus for large radii of curvature. (r. >-

). the grasp is infinitesimally stable with respect to rotations regardless of the stiffniess of the fingers.

I ' '? ." " - .' . . " -: - - " - - -." . " ..:" ..- --', " - - . .-



5.3 Very Soft Fingers

Fur contacts with soft fingers a combined compliance matrix is established for the finger and fingertip as
in Section 4.3. The combined compliance matrix is shown in Appendix C for a square fingertip. In the

matrix. k. is the elastic stiffness of the fingertip in compression. Since the shear modulus. , of rubber-like

materials is generally about one third die compression modulus, E, the shear stiffness can he written using
equations (4.11) and (4.12) as 1 k.. From equations (4.13)-4.15), the bending and torsional stiffncsses are

approximately Bkp and J Bkp, whcre 8 is equal to onc-twelfth the contact area.

'[he restoring force at the contact is 8gbP = [Kbp]dbp. The restoring forces in joint coordinates arc

given by Sgq = [Jfq]t~gbp and the corresponding motions in joint coordinates are given by
dq= [Kq] 16dq. The motions are then expressed in fingertip coordinates as d p [J fq ]dq.

Sg"kbk kb + kp

2kPkb(kC-frf)
agy kb kp r2+ kc kp + 3kbkc d

8g, = 0

6ges = 0

agey =0

kbkp(rf - kc)w' + 2fwkp(kr/+ kc) dezsgez -- 2(kb kp r/ 2+ kc kp -+ 3kb kc)

Table 5-6: Change in 8gt for small contact area (soft fingertips)

As in point contact and rolling contact, comparison between dbp and df p determines the relative motion

between the finger and the object, which appears, u, the differential jacobian AJ f]t.

The net change in gbp is obtained by summing the restoring forces and the forces due to the change in

geometry.

Sgbp = [Kbp]dbp + &[Jf]-tgf"

5.3.1 Discussion

The general expression for Ag is lengthy, but it is simplified considerably for the limiting cases in which

the contact area is very small, or very large. To further simplify the algebra in the following results, the finger
joint suffnesses in the a and b directions have been set equal so that k, = kb.

For a small contact area, B- 0 and the bending and torsional stiffnesses become negligible in comparison

A A
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to ie shear and compressive stiffnesses. For two lingem, the final results arc given in Table 5-6. If it i3 .I

further assumed that kp>, kb, as is usually die case, it can be shown that the results for Agb become identical

to those obtained in the point contact case.

For the case when the contact area is large, the bending and torsional stiffnesses become infinite. If it is
again assumed that kp:a kb, the problem rcduces to that of a finger glued to the surface of the object and Ag1
is given in Table 5-7.

S8x = -2kbd" -I

agy = -2kbdy

Sg' 0

Sge, 0 i

Sgey =0 :-

8gev = -2(kc-+ ( 1 + rf) k)d8z

Table 5-7: Change in 6gb for large contact area (soft fingertips).1

-1

;I
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6. Summary 60

In Section 2 a proccdurc was listed for discovering the propertics of a grip by moving the object slightly,

observing the resulting finger motions and determining the changes in the forces on the object. The grip
properties ofstifTncss. resistance to slipping and infinitesimal stability were introduced and it was shown that I
such properties could hc uscd to compare grips. For specific tasks, one could then choose, for example, the

grip that would be stiffest with respect to rotations or the grip that would resist the largest vertical force before

slipping occurrecL

Two-dimensional examples with point-contact fingers were used to demonstrate how the grip properties

depended on finger stiffness, finger arrangement and gripping forces. In later sections a more complete
three-dimensional analysis was developed. In the final example of Section 2, the instability of a coin held

on-edge between two fingers was discussed, using the simplifying example of a rectangle held between two I
pointed fingers. When the rectangle was rotated slightly, the finger stiffnesses produced restoring forces that
tended to stabilize the grip, but the differential change in geometry resulting from the rotation allowed the

grasp forces to become unstable. The stability of the grip was a function of the finger stiffness, the length of
the rcctangle, and the magnitude of the initial grasping forces. Interestingly, the grip became less stable as the
gripping forces were increased. Thus, while an increase in the gripping forces may make the fingers more
resistant to slipping, it does not always make the grip more secure

The coin example also uncovered a limitation of the point-contact assumption used in previous analyses.
With pointed fingers, a coin is less stable if held by fingers pressing against the two faces than if held on edge.
For human fingers, this is obviously not the case. A more accurate model of the finger/object interaction (one
that accounts for the deformation and rolling of the fingertips) explains why. Such a model is developed in

Section 4. First, however, it is useful to establish a more general framework for determining the
force/deflection relations of a grasp.

- For three-dimensional problems it becomes convenient to use matrices to describe the grip. The matrix
J equations are developed in Sections 3.1, 3.3, and 3.4. Whern the procedure of Section 2 is applied to general,

three-dimensional problems, the results depend on the number of degrees of freedom of the contact and the
finger. For an arbitrary motion of the object, the finger motion can be classified as under determined, exactly

determined or over determined. Different solutions are discussed for each case.

I4
Section 4 took a closer look at the interactions between diffirent kinds of fingertips and the object. The

characteristics of pointed, curved, and soft fingers were compared. The different characteristics are reviewed

below, and summarized in Table 6-1.

In Section 4.2, it was shown that the rolling of curved fingers causes the contact area to shift with respect
to the object. This adds a new term to the differential change in the geometry of the grasp - one that may

S
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Fingertips Kinematic conditions Friction conditions

fn Point contact with friction.
Translational motions and forces are Force tangent to object surlace

- transmitted, but rotations are not. limited by Coulomb friction law
Finger rotates about contact point

ft which remainb fixed on object. t f n

A[Jb] t  [3]pointed A[Jf]-t . rotation terms 1

Only translational forces and motions
transmitted. Contact point moves as Force tangent to object surface

finger rolls. Approaches case (3) for limited by Coulomb rilclon law
rf --. 00 and case (1) for rf f t 5 I fn.

ft L4[J b t : translation term

C U r v e d At f ] t .translation & rotation terms" ...

(3) Planar contact voth friction.
Translational and rotational forces Distributed prmssure and shear
and motions transmitted. No relative tractions allow transmission
motion without slippings c orces and moments in plane

nJb] t = [01 contact.
flat nA[Jf]'t = [0]

(4) Add elastic fingertip compliance to finger
compliance. Contact forces produce Uniformly distributed prossure
relative motion. Approa,,ies case (1) for and shear tractions. High

A - 0 and case (3) fo A ---p 00 (adhesive) friction allows large

A[Jb]t = [0] forcesand moments to betransmitted in plan,, of

very soft A[J t translation &rotation terms tamtt
contact,

(5) ElaStic coupling + rolling motion. Combine Non-uniform pressure distribut-
cases (2) and (4). Approaches case (1) ion and shear tractions permit

for rf -# 0 and A - 0 Approaches case large forces and small moments
(3) for rf - 00 and A --o 00 to be transmitted in plane of

SJb] t  translation & rotation terms contact.

soft, curved A[jf]t translation &rotatlonterms

Table 6-1: Summary of contact models derived in Section 4

help to stabilize it. As expected, when the radius of curvature of a curved finger becomes very small, the
movement of the contact point becomes negligible and the contact behaves like a point-contact with Ifiction.
As the radius of curvature becomes very large, th(. finger approaches the limiting case of a flat-tipped finit,"U

having a plznar contact with friction.

Fingers also deform, and a model was developed in Section 4.3 to investigate the importance of

deformation. The model considers a very soft fingertip which conforms and possibly adheres to the object
surface. The fingertip compliance is added to the finger joint compliance. As the area of contact becomes
small, the fingcrtp becomes more compliant with respect to rotations than translations and approaches the
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planar contact
with friction 6o

large
area I

very A
soft

Contact fingertip
area(reav to soft curved

object size) fi-ne-i

~ard curved

area fingertip

rf -0 rf -oo
point contact
with friction Fingertip radius

(relative to object size)

Figure 6-1: Relations between finger models

point-contact model. For large ci ntact areas, the rotational compliance becomes much smaller than the

translational compliance and the limiting case of a planar contact with friction is approached.

Fingertips such as those found on the human hand display both rolling and deformation. Section 4.4

addressed the properties of a soft, curved fingertip and found that they combined the attributes of the models

in Sections 4.2 and 4.3. As the radius of curvature and the contact area became small, the fingertip could be

approximated by a point-contact. For large radii of curvature and large contact areas, the fingertip

approached the case of a planar contact with friction.

Figure 6-1 shows the regimes in which the different models developcd in Section 4 apply, and indicates

the limiting cases approached for very large or small radii of curvature and contact areas.

In Section 5, some simple examples were used to demonstrate the methods dcscribed in Sections 3.1-3.4
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and to illustrate the differences between pointed, curved and soft fingers. When pointed fingertips wcre used, !4

and only rotations of the object were considered, the problem reduced to the two-dimensional example given

in Section 2. For curved fingertips, the stability of the grasp increased over tie pointcd-finger case due to

rolling of the fingertips. If the fingcrtip radii were larger that one half the length of rectangle, the grip became

stable with respect to rotational displacements no matter how small the finger stiffnesscs were. The

relationship between the fingertip radii and the length of the rectangle brings up an important point; the

definitions of "large" or "small" radii of curvature and contact areas depend on the size of the object being

handled. This is why the point-contact model is reasonable when we hold a basketball or a large box, but not

a coin or a matchbox.
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7. Applications to the Design and Control of
Hands

_ .- Ilie analysis presented in this paper has been part of an effort to describe the mechanical properties of a
grip and to detecrmine how they depend on inger shapes, contact conditions, finger stiffnesscs and gripping

forces, It has been shown that the predicted behavior depends strongly on the model used for the interaction

between the fingertips and the object. In this section we consider how the results might be applied to the

design and control of dextrous hands.

For controls purposes, the small-motion behavior of a grip amounts to a linearized description of the
"plant," giving a relationship between displacements of the object and the resulting changes in force. The
results show that point-contact finger models and stiffness-based control schemes are not always adequate. If

only the stiffnesses of the fingers are considered, a displacement of the object always results in forces that tend
to restore the object to its original position. However, a small change in the grip geometry may cause the
grasping forces to produce something akin to positive feedback for displacements of the object. For stability,
these must be canceled by increasing the grip stiffness in the corresponding directions.

The contribution of the gcometric effect varies for pointed, round and soft fingers and its magnitude

depends on the relative dimensions of the fingers and the object.

* i If a stiffness model as used in earlier analyses is not adequate, then what must be done to describe and
.- control the grip? Unfortunately, a three-dimensional analysis of the grip becomes quite involved when finger

rolling and deformation are considered. It seems unrealistic to expect a robot or gripper controller to perform

a complete analysis in real-time.

Much of the complexity of the procedure results from its being a predictive or open-loop calculation in
which only the motion of the object and the physical characterstics of the object and the fingers are assumed
to be known. The forward force and displacement relations are relatively simple, but some complication

*arises in determining how displacements will be transmitted through the contact and how the finger will
respond to them. Further difficulty arises in determining how finger siffnesses, finger motions and grasp

forces will interact to change the forces transmitted to the object. Much of the difficulty could be avoided if
the finger motions and coniactforces were available from another source. In practice, humans and animals use

* sensory information and cxperience to provide this kind of information.

When we manipulate objects with our fingers we do not use a kinematic analysis to predict how the forces
at our fingertips will change in response to displacements of the object. Instead, we seem to acquire a

database of general grip behavior and we use the sensors in our fingers and fingertips to modify our

predictions while we work. A similar approach might also be used by a robot, provided the gnpper had

sufficient sensors to describe the behavior of the grasp. This prompts us to consider what kinds of sensors
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would be useful. Based on the results of the analysis presented earlier, several types of sensory information are

suggested:

* Thc measurement of noiral and shear forces at the fingertips.
If thec can bc measured, they do not have to be computed. The shear force can be compared
with normal forces and, using information about the friction conditions, predictions can be made
concerning how close each finger is to slipping.

* The location of the center of the contact area on the finger.
Using this information, one can determine how the contact has moved since the last time step, and
(by extrapolation), where it will be next. For curved fingers this allows one to track the movement
of the contact with respect to the finger and to determine the degree of rolling motion. For fingers
that do not roll, it shows that rate at which the finger is sliding against a surface.

* The size. uniformity and general shape of the pressure distribution of the contact area.
The pressure distribution could be compared with typical profiles for point contacts, curved
contacts and soft contacts and an estimate made of how closely the actual contact approaches each
of these models.

* Sums and first moments of pressures and shear tractions.

These allow the forces and moments transmitted through the contact to be determined.

To the above list of fingertip quantities would be added the joint angles and joint torques of the fingers, but

already, the list is becoming unrealistic. Even if accurate sensors were available, computing first moments and
matching pressure profiles might be just as time consuming as performing the analysis presented in this paper.
Determining such quanuties has much in common with feature extraction for grey-scale vision, which is

notoriously slow unless performed on special-purpose hardware.

However, even if only the forces and an estimate of the contact size and location were available, the
analysis could be simplified. Between these fingertip quantities and the finger joint angles, most of the
informaL'nn needed to describe the grip would be available through forward transformations. The finger joint

torques are easily found from the fingertip forces and the fingertip motion is easily determined from the joint
angles. An estimate of the contact size would indicate the dr.gree of finger/object coupling and the contact

location would allow the finger jacobians to be updated. A small number of fingertip sensors might be

sufficient. Recent studies with human beings performing assembly-line tasks [22] suggest that a sparse array
of sensory information (perhaps no more than eight points per fingertip) provides adequate information,

In Section 2 the possibility of discriminating between different grip geometries based on grip stiffness,

stability and resistance to slipping was considered. The best grip would be the one that most closely matched
the grip properties to the task requirements. Presumably the finger stiffnesses would be chosen near the
middle of their achievable range. The next question is, once a suitable grip has been identified how should

the finger stiffncsses (joint servo gains) and joint torques be adjusted? The problem is usually under

determined if only the force on the object and its stiffness with respect to external !oads are specified.

Salisbury [2] specified additional intenial forces and internal grip stiffncsses so that every finger joint torque
and stiffness became determined. The internal grip forces and stiffnesses could be chosen to ensure that
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fingers remained in contact with the object, to reduce the likelihood ofcrushing die object, or to reduce the

danger of slipping.

As mentioned in Section 1, Orin and Oh [8] consider a similar problem in determining the most efficient

distribution of joint forces for walking machines or multi-fingered grippers. The optimum force distribution A
is found subject to a number of constraints including linearized friction limitations. In grasping it is probably

less important to minimize power consumption than it is in a walking machine. More important is the need to
minimize gripping forces. 11iis prevents objects from being damaged, avoids saturating the fingertip sensors

and reduces the kind of instability dcmonstrated for the rectangle held between two fingers. Linear

programming methods may be too slow for real-tune control of joint torques, but could be useful for off-line -4

estimation of grasp forces and stiffnesses. The fingertip models of Section 4 could be added to the kinematic
description of the grasp.IJ

In a current investigation, Kerr [23] has extended the kinematic analyses of Salisbury and has considered

the optimum selection of internal grip forces. Like Orin and Oh [8], he suggests the use of "friction
pyramids" to form a set of lnear constraint equations for slipping at the fingertips.

ldcally, choosing and adjusting a grip is something that a robot should be able to do using a combination

of compuLadonal methods (including those discussed above), sensory information and some "rules of

thumb." The rules are difficult to define, but as we continue to explore the mechanics of gripping and to
observe how humans and animals handle objects we can begin to make some suggestions such as:

* In general, grip as gently as possible without letting the object slip. A light grip helps to prevent
damage to the object and the fingers, reduces the likelihood of instability, and keeps the sensors
working near the lower end of their range (where they are often more sensitive).

* Try to match the stiffness of the grip to the requirements of the task. This will simplify the active
control of the object.

• Spacing the fingers closer together results in a grip that is less stiff with respect to rotations.

* Point contacts are usually less stable than soft or rounded fingers.

Compared to the analysis and control of manipulator arms. the modeling and control of multi-fingered
grippers 2re in an infant stage. Current efforts are directed not toward making them more precise and

efficient but toward controlling tnem at all. Fortunately, it is unnecessary to develop a system that rivals the

human hand. In fact, a gripper that could grasp and manipulate within its restricted environment as well as

many animals do in theirs, would be extremely useful. The results of this and previous aiialyses suggest that

for tasks involving small motions and solid objects, grips can be modeled and controlled. Experiments with
grippers assembling parts, wielding tools and loading machines are now icquired to construct grasping rules,

to determine what sensory information is most useful and to explore control strategies for manufacturing

hands.
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A. Matrix Identities

SbThe fingr positions and orientations may be expressed with 44 homogcneoustransformation matrices,

A r ax bx CX rX
[T] = ay by cy r

0 1i [az bz c. rz

00011 -]

(A] is a 3x3 orthonormal matrix of direction cosines, expressing the orientation of the finger (ab.c) system of
Figure 3-1 in terms of the global (x.yz) system. r is a vector from the origin of the (x.yz) system to the origin

of Lhe (,b.c) system. If rf is the vector in Figure 3-1 from fto fp in (a.b.c) cooidinates then [A ] r gives the

same vector in (x.yz) coordinates. Consequently, the vector from o tofp in Figure 3-1 is r = rb - [A] rf.

The relationship between two six-elemcnt vectors (dt = [d. d , d , dx, d 8, d9 2 ] ) of

differential translations and rotations may be expressed as a 6x6 jacobian.

dbP = [Jb] db
The jacobian is convenicntly written in terms of 3x3 partitions:

A t  IAtRt

['Jb] -- - -- -
(6x6) 0 [A t

(3x3) (3x3)

[A] is again a 3x3 matrix of direction cosines. In the above example, [A] expresses the orientation of the

(,n.n) coordinate system at bp in Figure 3-1 with respect to the (x.yz) system. Since [A] is orthonormal it

follows that [A]t = [A] " .

(R] is an antisymmetric cross-product matrix formed from the elements of a vector r, such that if v is a

three-component vector (for example, the three rotational components of db) then

r0 -r. r 1[]
[R] v = rz 0 -r. vy rxv

r. 0 Vz

Since is [R] is antisyrrunetc. [R]t = -[R] and [R]tv v VCR] = v x r.

Given the above identities for [R] and [A] the following reiationships hold for (J]'



0-%.

69

[Jb]t = [Jb]L'

RA tA 0 IA

[Jb] t  --A -- I 
AtRt I At

A.1 Matrix Method for Under Determined Finger Motions

For the case in which the motion of the object does not completely determine the motion of the finger, the
potential energy may be minimized subject to the tnc constraint conditions in (P]. The constraint equations,

C,. are formed by multiplying one row of [ P ] by dc. The nfauxiliary equations may then be written as [24]

a P.E. +. a CI . a C2  a CnC
= aqi 1q+ -+"+ Xc a q

These are combined with the constraint equations to provide nf+ nc equations for nf+ nc unknowns. The
equations may be conveniently expressed as,

where I is a column vector of the nc Lagrange multipliers and

Kq pt

.P IO

A.2 Differential Jacobians

hr Section 3.1 the change in the jacobians, [J], as a result of small displacements of the object are

considered. These terms, [ AJ ] and [ AJ ]t. result from shifting of the contact area and rolling of the fingers.

Products such as [AJ].d contain very small terms and may be ignored, but products such as [AJ]t.g may

contain significant terms since the forces, g, may be large. As an example, if the contact area translates and
rotates with respect to the object then change in the jacobian relating g bp and gb is

SAJb]t = [Jb' ]t. [Jb]t
where [Jb' ]t is the jacobian relating to the new positicn and orientation of the contact area and [Jb]t is

the original jacobian. By writing [Jb' ]t and [Jb]t in terms of partitions, [AJb]t is seen tobe

AA ~0

A(RA) IAA

75 IY
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whcrcA(RA) (RA)'-(RA) = [R][A] + rARI[AI + [R][AA1 + [AR][AA] - ER][A],
[AR) [AA] containssccond order terms, and may be dropped so that A(RA) R [AR][A] + (R][AA].

[AR] and iAA] can be written in terms of differential translations and rotations.

S0 -Sr z  Sry

CAR] [R'] - [R] = 8rz 0 -rj-Sry 8ir, 0

0 -SOz so, ]

[AA] [A'] -(A] a8z  0 S0x
-sOYt sx 0

[AA] and 8r are also equivalent to the upper left 3x3 partition and right column respectively of the

differential 4x4 homogeneous transform, [A]. expressing a small translation and rotation of one coordinate
systemn with respect to another [16].

V]

U3
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B. Rolling Contact

r(s) 8s) and u' =U + smay be expanded in terms of r(S) as

= drb (s) d2rb"k r's ) = rs) + os--- -- + 2I d =  +""-
2!

dr dr
u'() =- + S.

Then A r becomes :-
dr (5s)2 d2r d

Ar_=-- + ( s + ... = 8su + (asp du
ds 2! 21 ds

Since the first derivatives of rb and rf are equal at the initial contact point, subtracting Arb - Arf gives

r =(8s)2  d r  d2 rfAr r T- s2 -E-) +..

or, Arb - Alr = 1/2(8s)2 times the difference in curvature between rb(S) and rf(s).

The rotation of the contact point is given by the vector ( Ub X ub') and the rotation of the fingertip is given

by ( uf x u ). Expanding uf and u in terms of r(s) and discarding third and higher derivatives of r gives
Ub(U. = + drb_ d= rb

Ubx b = u bS) 0 ()+ s( X d ,

and
K~u u7'!u d2+8( & f +f x d' rbuf X U; = (uf X ub) + 8s(udUf d + 8s(ub X---)u + (83)'( x d s

(0) + as((, df d2rb
S )x u )+ (85)2(--2-r- )

where u = Ub = uf at the initial contact point.

For the case in which the object surface is flat and the fingertip is a segment of a circular arc, as in Figures

4-3 and 4-4, or 5-2 and 5-3, the rolling equations become

rf = (r, sinB/)i +(r cOs f)j, rb= (rc can 8b)t - rcj.

where Of is related to s as

ds

For O- b = 0 at the initial contact point, equations (4.5)-(4.7) become

. . . - - . - . * * , • . . . . . . . . -. . . • . . . .. -
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Art, (r. 66)I u 1
Arb -Arf 0 1i +

--ul) U =2

.'I x U, aO

iA6aA~& UfX ac5 A"



73

C. Details for examples in Section 5

[Jb] [Jf] [Jq1

oooloo roooloro 100

000-100 000-10 0 0 0

f-1q 0M 0Kq 0U 0 100 01
0-00 -0000 -000 1ka q 0d 01

0L00O 1 00 01 1 O0 0kO0 0

-10 0 0 -1 0 0 10 0 -1 0 0 k 0 0 1- rf 0

[Jq] [M] [Kq]

0 01 0 0r0l0O

000 -1 0 0 0 0

0 1 r+k [o 0 1 00o 0 [kb k
OJ1 01 0 b

0 0- 0
0 0 0

._.

0 0 bk 011k rf k1 0 0

0 0 __1 0-kbr 0 Ak b rf+  :A

0 0 -! 0 0 0 -a 0
kbk k

0 L0 0 0 dq 9q

oI ~~~ I o oox-- E y

0 0 0 0 0 0 L2

Figure C-1: Matrices for Left Finger - pointed or rolling contact
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A [Jf- point contact A ( f] rolling contact

0 00 0 0 0 0 0 0 0 0 0

•.660 0 0 0 0 -68 0 0 0 0 0
0-60 0 0 0 0 0 -680 0 0 0

0-0 0 000 80rf 0 0 0 0 0
0 0 0 -800 0 0 0 0 -800 0

00 -r0 0-800 0 0 0 060 0

AEJb]t rolling contact Object Finger

0 00 00 db dbp dc dfp df dq

0 0 0 0 0 1 dx 0 0 10 -dn -dn
0 0 010 00 2 dy dm din1  im Rdm gm

84r 0 0 30 0 0 0 dn dn I dn 0
"e0 0 0I 0 0 0I

0 0 0orf 0 00 4 0 dO I adn 0
-- 5 0 0 0 0

6 dOz 0 j 0 adm adm

In the above,

w dOz

dn=-dx 88 =d8z -a(dy 2 dbp = [Jb] db
w dz2

dm= dy- - k kcc = [M] dt
2

dO, =d6z kb rf + kc  dfp = [Jf] df

kb rf d = [Jq] dq
a2

kb r2 + k'

Figure C-2: Matrices for left finger- pointed or rolling contact

F ..). .- " ." ,', .: " " " " ' " """ -..- --
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Summary of matrix equations for left finger - point-contaCt example

1. dbP = [M][Jb]db

2. dfp = [Jfq]dq -.--

3.

LX~i [dnj

4. 89q = Kq]dq

U5. [Cfp] = [Jfq][Kq]l'[Jfq]t

6. [Cfc] = non-singular portion of C f p

7. df subset of d fpcorresponding t [C fc]

8. Sgf = [CfpY-Idfc

9. SgrP = SgrC + A[Jfl-tgr

0
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ECfP]

3
0 0 0 0 0

00+00 0k b kP

0~~~~ 110 - -
k c Bkp k c

0 0 0 0 0

Combined compliance for Finger and square fingertip
where ka =kb in finger joint coordinates and

k comp k kp

= kp

=tn 2kp
3

B -Area

12
for the elastic fingertip.

Figure C-3: Compliance matrix for soft finger example
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